
www.manaraa.com

www.manaraa.com

METHODOLOGIES AND
SOFTWARE ENGINEERING

FOR AGENT SYSTEMS

The Agent-Oriented
Software Engineering Handbook

www.manaraa.com

MULTIAGENT SYSTEMS,
ARTIFICIAL SOCIETIES, AND

SIMULATED ORGANIZATIONS
International Book Series

Series Editor: Gerhard Weiss, Technische Universität München

Editorial Board:
Kathleen M. Carley, Carnegie Mellon University, PA, USA

Yves Demazeau, CNRS Laboratoire LEIBNIZ, France
Ed Durfee, University of Michigan, USA

Les Gasser, University of Illinois at Urbana-Champaign, IL, USA
Nigel Gilbert, University of Surrey, United Kingdom

Michael Huhns, University of South Carolina, SC, USA
Nick Jennings, University of Southampton, UK

Victor Lesser, University of Massachusetts, MA, USA
Katia Sycara, Carnegie Mellon University, PA, USA

Michael Wooldridge, University of Liverpool, United Kingdom

Books in the Series:

CONFLICTING AGENTS: Conflict Management in Multi-Agent Systems, edited by
Catherine Tessier, Laurent Chaudron and Heinz-Jürgen Müller, ISBN: 0-7923-7210-7

SOCIAL ORDER IN MULTIAGENT SYSTEMS, edited by Rosaria Conte and
Chrysanthos Dellarocas, ISBN: 0-7923-7450-9

SOCIALLY INTELLIGENT AGENTS: Creating Relationships with Computers and
Robots, edited by Kerstin Dautenhahn, Alan H. Bond, Lola Cañamero and Bruce Edmonds,
ISBN: 1-4020-7057-8

CONCEPTUAL MODELLING OF MULTI-AGENT SYSTEMS: The CoMoMAS
Engineering Environment, by Norbert Glaser, ISBN: 1-4020-7061-6

GAME THEORY AND DECISION THEORY IN AGENT-BASED SYSTEMS, edited by
Simon Parsons, Piotr Gmytrasiewicz, Michael Wooldridge, ISBN: 1-4020-7115-9

REPUTATION IN ARTIFICIAL SOCIETIES: Social Beliefs for Social Order, by Rosaria
Conte, Mario Paolucci, ISBN: 1-4020-7186-8

AGENT AUTONOMY, edited by Henry Hexmoor, Cristiano Castelfranchi, Rino Falcone,
ISBN: 1-4020-7402-6

AGENT SUPPORTED COOPERATIVE WORK, edited by Yiming Ye, Elizabeth
Churchill, ISBN: 1-4020-7404-2

DISTRIBUTED SENSOR NETWORKS, edited by Victor Lesser, Charles L. Ortiz, Jr.,
Milind Tambe, ISBN: 1-4020-7499-9

AN APPLICATION SCIENCE FOR MULTI-AGENT SYSTEMS, edited by Thomas A.
Wagner, ISBN: 1-4020-7867-6

www.manaraa.com

METHODOLOGIES AND
SOFTWARE ENGINEERING

FOR AGENT SYSTEMS

The Agent-Oriented
Software Engineering Handbook

Edited by

Federico Bergenti
Università degli Studi di Parma, Italy

Marie-Pierre Gleizes
Institut de Recherche en Informatique de Toulouse

(CNRS – INP – UPS), France

Franco Zambonelli
Università degli Studi di Modena e Reggio Emilia

KLUWER ACADEMIC PUBLISHERS
NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW

www.manaraa.com

eBook ISBN: 1-4020-8058-1
Print ISBN: 1-4020-8057-3

Print ©2004 Kluwer Academic Publishers

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2004 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

www.manaraa.com

Contents

Contributing Authors

Foreword

Introduction

Part I Concepts and Abstractions of Agent-Oriented Software Engineering

Introduction

1
Agent-Based Abstractions for Software Development
Munindar P. Singh

1.
2.
3.
4.
5.
6.

Introduction
A Brief History of Software Development
Agents and Multiagent Systems
Agent-Based Software Development
Critical Directions
Conclusions

2
On the Use of Agents as Components of Software Systems
Federico Bergenti and Michael N. Huhns

1.
2.
3.
4.

Introduction
Software Agents vs. Software Components
Semantically Reusing Agents and Components
Discussion

3
A Survey on Agent-Oriented Oriented Software Engineering Research
Jorge J. Gómez-Sanz, Marie-Pierre Gervais and Gerhard Weiss

1.
2.
3.
4.
5.

Introduction
Analysis
Design
Implementation
Testing

xi

xxi

xxvii

3

5

5
7
9

13
16
17

19

19
20
25
30

33

33
35
41
55
57

www.manaraa.com

vi Methodologies and Software Engineering for Agent Systems

6.
7.

More Information
Conclusions

Part II Methodologies for Agent-Based Systems Development

Introduction

4
The Gaia Methodology
Luca Cernuzzi, Thomas Juan, Leon Sterling and Franco Zambonelli

1.
2.
3.
4.
5.
6.
7.

Introduction
Gaia in a Nutshell
Gaia v.2
The ROADMAP Methodology
Extending Gaia with AUML
Open Issues
Conclusions

5
The Tropos Methodology
Paolo Giorgini, Manuel Kolp, John Mylopoulos and Marco Pistore

1.
2.
3.
4.
5.
6.

Introduction
Overview
Formal Tropos
Socially-Based MAS Architectures
Goal Models
Conclusions

6
The MaSE Methodology
Scott A. DeLoach

1.
2.
3.
4.
5.
6.
7.

Introduction
Methodology
Analysis Phase
Design Phase
agentTool
Applications
Comparison with other Methodologies

7
A Comparative Evaluation of Agent-Oriented Methodologies
Arnon Sturm and Onn Shehory

1.
2.
3.
4.
5.
6.

Introduction
The Evaluation Framework
Evaluating Gaia
Evaluating Tropos
Evaluating MaSE
Summary and Conclusion

61
61

65

69

69
70
75
79
84
87
87

89

89
90
94
98

102
105

107

107
108
108
117
122
124
124

127

127
129
134
138
143
147

www.manaraa.com

Contents vii

Part III Special-Purpose Methodologies

Introduction 153

8
The ADELFE Methodology
Gauthier Picard and Marie-Pierre Gleizes

1.
2.
3.
4.
5.
6.
7.
8.
9.

Introduction
ADELFE Methodology Overview
Preliminary Requirements
Final Requirements
Analysis
Design
ADELFE Tools
Comparison with other Methodologies
Conclusion

Giovanni Caire, Wim Coulier, Francisco Garijo, Jorge Gómez-Sanz, Juan Pavón, Paul
Kearney and Philippe Massonet

1.
2.
3.
4.
5.
6.

Introduction
The MESSAGE Methodology
Analysis/Design Travel Agent Case-Study
Considerations on Low-Level Design
Evaluation of MESSAGE
Conclusions

10
The SADDE Methodology
Carles Sierra, Jordi Sabater, Jaume Agusti and Pere Garcia

1.
2.
3.
4.
5.
6.
7.
8.
9.

Introduction
The SADDE Methodology
A Case Study: The Electricity Market
Step 1: The EBM
Step 2: The Electronic Institution
Step 3: The ABM
Step 4: Multiagent System
Cycle P4 through Evolutionary Computing
Conclusions

11
The Prometheus Methodology
Michael Winikoff and Lin Padgham

1.
2.
3.
4.
5.

Introduction
System Specification
Architectural Design
Detailed Design
Tool Support

157

157
158
161
161
163
165
172
173
174

177
9
The MESSAGE Methodology

177
178
183
191
193
194

195

195
196
199
199
203
206
210
210
214

217

217
220
222
226
228

www.manaraa.com

viii Methodologies and Software Engineering for Agent Systems

6.
7.
8.

Experiences with Using Prometheus
Related Work
Future Work

230
231
234

Part IV Tools and Infrastructures for Agent-Oriented Software Engineering

12
The AUML Approach
Marc-Philippe Huget, James Odell and Bernhard Bauer

1.
2.
3.
4.
5.

Introduction
Agent UML Purpose
Current Work in Agent UML
Future Directions in Agent UML
Conclusion

13
FIPA-Compliant Agent Infrastructures
Fabio Bellifemine and Agostino Poggi

1.
2.
3.
4.
5.

Introduction
FIPA
FIPA-Compliant Agent Infrastructures
JADE
Conclusions

14
Coordination Infrastructures in the Engineering of Multiagent Systems
Andrea Omicini, Sascha Ossowski and Alessandro Ricci

1.
2.
3.
4.
5.
6.
7.

Introduction
Coordination in MAS
Infrastructures for MAS Engineering
Modelling Coordination Infrastructures with Activity Theory
Engineering MAS with Coordination Infrastructures
An Example of a Coordination Infrastructure
Discussion

Part V Non Traditional Approaches to Agent-Oriented Software Engineering

Introduction

15
Engineering Amorphous Computing Systems
Radhika Nagpal and Marco Mamei

1.
2.
3.
4.
5.

Introduction
The Amorphous Computing Model
Developmental Biology as an Inspiration
Towards Programming Languages
Pervasive Computing

237

237
238
239
252
256

259

259
260
262
264
272

273

273
274
278
283
290
293
295

299

303

303
305
305
309
315

www.manaraa.com

Contents ix

16
Making Self-Organising Adaptive Multiagent Systems Work
Jean-Pierre Georgé, Bruce Edmonds and Pierre Glize

1.
2.
3.
4.
5.
6.

Introduction
Characterization of Emergence in Synthetic Systems
An Example of a MAS Technology using Emergence
Flood Forecast by Cooperative Self-Organizing Agents
Software Engineering Requirements for Self-Organizing MAS
Conclusion

17
Engineering Swarming Systems
H. Van Dyke Parunak and Sven A. Brueckner

1.
2.
3.
4.
5.

What is Swarming?
Where would You Want to Use Swarming?
Why does Swarming Work?
How can We Apply these Principles in Engineered Systems?
Conclusion and Prospect

18
Online Engineering and Open Computational Systems
Martin Fredriksson and Rune Gustavsson

1.
2.
3.
4.
5.

Introduction
Open Computational Systems
Online Engineering
Methodological Benchmarking
Concluding Remarks and Future Work

Part VI Emerging Trends and Perspectives

Introduction

19
Agents for Ubiquitous Computing
Zakaria Maamar, Walter Binder and Boualem Benatallah

1.
2.
3.
4.
5.
6.

Introduction
Examples on Ubiquitous Computing
Background
Dimensions of Ubiquitous Computing
Contributions of Agents to Ubiquitous Computing
Conclusion

20
Agents and the Grid
Luc Moreau, Michael Luck, Simon Miles, Juri Papay, Keith Decker and Terry Payne

1.
2.
3.

Introduction
The Grid and Bioinformatics
Agents in Bioinformatics Grids

321

321
325
327
331
337
340

341

341
349
353
364
375

377

377
379
382
386
388

393

395

395
397
398
401
404
411

413

413
414
416

www.manaraa.com

x Methodologies and Software Engineering for Agent Systems

4.
5.
6.
7.
8.

Agent-Based Service Discovery for Grid Computing
Architecture Design
Performance Analysis
Related Work
Conclusion and Future Work

21
Roadmap of Agent-Oriented Software Engineering
Zahia Guessoum, Massimo Cossentino and Juan Pavón

1.
2.
3.
4.
5.
6.
7.

Introduction
Agents as a New Modeling Paradigm
Methods for Building Multiagent Systems
Tools for the Implementation, Deployment and Execution
Application Opportunities
A Roadmap for Agent-Oriented Software Engineering
Conclusions

References

Index

419
423
426
428
429

431

431
433
435
441
447
448
450

451

503

www.manaraa.com

Contributing Authors

Jaume Agusti
IIIA – Artificial Intelligence Research Institute
CSIC – Spanish Scientific Research Council
Bellaterra, Catalonia, Spain

agusti@iiia.csic.es

Bernhard Bauer
Institute of Computer Science
University of Augsburg
86150 Augsburg, Germany

Bernhard.Bauer@informatik.uni-augsburg.de

Fabio Bellifemine
Telecom Italia Lab SpA
Via G. Reiss Romoli 274, 10148 Torino, Italy

Fabio.Bellifemine@tilab.it

Boualem Benatallah
The University of New South Wales, Sydney, Australia.
INRIA – Loria, France.

boualem@cse.unsw.edu.au

Federico Bergenti
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma
Parco Area delle Scienze 181/A, 43100 Parma, Italy

bergenti@ce.unipr.it

Walter Binder
Swiss Federal Institute of Technology, Lausanne, Switzerland.
walter.binder@epfl.ch

www.manaraa.com

Sven A. Brueckner
Altarum Institute

sven.brueckner@altarum.org

Giovanni Caire
Telecom Italia Lab SpA
Via G. Reiss Romoli 274, 10148 Torino, Italy

giovanni.caire@tilab.com

Luca Cernuzzi
Departamento de Ingeniería Electrónica e Infromática
Universidad Católica “Nuestra Señora de la Asunción”
Campus Universitario, C.C. 1683, Asunción, Paraguay

lcernuzz@uca.edu.py

Massimo Cossentino
Istituto di Calcolo e Reti ad Alte Prestazioni
Italian National Research Council

cossentino@pa.icar.cnr.it

Wim Coulier
Certipost
Centre Monnaie, 1000 Brussels, Belgium

Wim.COULIER@staff.certipost.be

Keith Decker
Department of Computer and Information Sciences
University of Delaware

decker@cis.udel.edu

xii Methodologies and Software Engineering for Agent Systems

Scott A. DeLoach
Department of Computing & Information Sciences, Kansas State University
234 Nichols Hall, Manhattan, Kansas, USA 66506-2302

sdeloach@cis.ksu.edu

Bruce Edmonds
CPM – Centre for Policy Modelling, Manchester Metropolitan University
Manchester, M1 3GH, UK

bruce@cfpm.org

www.manaraa.com

Martin Fredriksson
Societies of Computation
Department of Software Engineering and Computer Science
Blekinge Institute of Technology
Box 520, Ronneby, Sweden.

martin.fredriksson@bth.se

Pere Garcia
IIIA – Artificial Intelligence Research Institute
CSIC – Spanish Scientific Research Council
Bellaterra, Catalonia, Spain

pere@iiia.csic.es

Francisco Garijo
Telefónica I+D
Emilio Vargas, 28043 Madrid, Spain

fgarijo@tid.es

Jean-Pierre Georgé
IRIT – Institut de Recherche en Informatique de Toulouse
118 route de Narbonne, 31062 Toulouse Cedex 4, France

george@irit.fr

Marie-Pierre Gervais
Laboratoire d’Informatique de Paris 6
8 rue du Capitaine Scott, 75015 Paris, France

Marie-Pierre.Gervais@lip6.fr

Paolo Giorgini
Dipartimento di Informatica
Università degli Studi di Trento
Via Sommarive 14, 38050 Povo, Trento, Italy

paolo.giorgini@dit.unitn.it

Marie-Pierre Gleizes
Institut de Recherche en Informatique de Toulouse (CNRS – INP – UPS)
118 route de Narbonne – 31062 Toulouse Cedex France

Marie-Pierre.Gleizes@irit.fr

Contributing Authors xiii

www.manaraa.com

xiv Methodologies and Software Engineering for Agent Systems

Pierre Glize
IRIT – Institut de Recherche en Informatique de Toulouse
118 route de Narbonne, 31062 Toulouse Cedex 4, France

glize@irit.fr

Jorge J. Gómez-Sanz
Facultad de Informatica,
Universidad Complutense de Madrid, 28040 Madrid, Spain

jjgomez@sip.ucm.es

Zahia Guessoum
OASIS (Object and Agents for Simulation and Information Systems) Team
LIP6 (Laboratoire d’Informatique de Paris), Université de Paris 6

Zahia.Guessoum@lip6.fr

Rune Gustavsson
Societies of Computation
Department of Software Engineering and Computer Science
Blekinge Institute of Technology
Box 520, Ronneby, Sweden.

rune.gustavsson@bth.se

Marc-Philippe Huget
Agent ART Group
Department of Computer Science
University of Liverpool
Liverpool L69 7ZF, United Kingdom

M.P.Huget@csc.liv.ac.uk

Michael N. Huhns
Department of Computer Science and Engineering
University of South Carolina
Columbia, SC 29208, USA

huhns@sc.edu

Thomas Juan
Department of Computer Science and Software Engineering,
The University of Melbourne, 3010, Victoria, Australia

tlj@cs.mu.oz.au

www.manaraa.com

Paul Kearney
BT Exact
Adastral Park, Martlesham Heath Ipswich IP5 3RE, UK

paul.3.kearney@bt.com

Manuel Kolp
Information Systems Research Unit
School of Management
University of Louvain, Belgium

kolp@isys.ucl.ac.be

Michael Luck
Department of Electronics and Computer Science
University of Southampton

mml@ecs.soton.ac.uk

Zakaria Maamar
Zayed University, Dubai
P.O. Box 19282, Dubai, United Arab Emirates

zakaria.maamar@zu.ac.ae

Marco Mamei
University of Modena and Reggio Emilia
Reggio Emilia, Italy

mamei.marco@unimo.it

Philippe Massonet
CETIC
Rue Clément Ader, 8 B-6041 Gosselies, Belgium

phm@cetic.be

Simon Miles
Department of Electronics and Computer Science
University of Southampton

sm@ecs.soton.ac.uk

Contributing Authors xv

www.manaraa.com

Luc Moreau
Department of Electronics and Computer Science
University of Southampton

L.Moreau@ecs.soton.ac.uk

John Mylopoulos
Department of Computer Science
University of Toronto, Canada

jm@cs.toronto.edu

Radhika Nagpal
Massachusetts Institute of Technology
Cambridge, MA, USA 02139

radhi@ai.mit.edu

James Odell
James Odell Associates
3646 W. Huron River Dr.
Ann Harbor, MI 48103, USA

email@jamesodell.com

Andrea Omicini
DEIS, Università di Bologna a Cesena
Via Venezia 52, 47023 Cesena, Italy

mailto:andrea.omicini@unibo.it

Sascha Ossowski
ESCET, Universidad Rey Juan Carlos
Campus de Mostoles, Calle Tulipan s/n, E-28933 Madrid, Spain

mailto:S.Ossowski@escet.urjc.es

Lin Padgham
School of Computer Science and Information Technology
RMIT University
GPO Box 2476V
Melbourne, 3001, Australia

linpa@cs.rmit.edu.au

xvi Methodologies and Software Engineering for Agent Systems

www.manaraa.com

Juri Papay
Department of Electronics and Computer Science
University of Southampton

jp@ecs.soton.ac.uk

H. Van Dyke Parunak
Altarum Institute

van.parunak@altarum.org

Juan Pavón
Universidad Complutense Madrid
Facultad de Informática
28040 Madrid, Spain

jpavon@sip.ucm.es

Terry Payne
Department of Electronics and Computer Science
University of Southampton

trp@ecs.soton.ac.uk

Contributing Authors xvii

Gauthier Picard
Institut de Recherche en Informatique de Toulouse (CNRS – INP – UPS)
118 route de Narbonne – 31062 Toulouse Cedex France

picard@irit.fr

Marco Pistore
Dipartimento di Informatica
Università degli Studi di Trento
Via Sommarive 14, 38050 Povo, Trento, Italy

marco.pistore@dit.unitn.it

Agostino Poggi
Dipartimento di Ingegneria dell’Informazione
Università degli Studi di Parma
Parco Area delle Scienze 181/A, 43100 Parma, Italy

poggi@ce.unipr.it

Alessandro Ricci
DEIS, Università di Bologna a Cesena
Via Venezia 52, 47023 Cesena, Italy

mailto:aricci@deis.unibo.it

www.manaraa.com

Jordi Sabater
IIIA – Artificial Intelligence Research Institute
CSIC – Spanish Scientific Research Council
Bellaterra, Catalonia, Spain

jsabater@iiia.csic.es

Onn Shehory
IBM Haifa Research Labs
Haifa, 31905 Israel

onn@il.ibm.com

Carles Sierra
IIIA – Artificial Intelligence Research Institute
CSIC – Spanish Scientific Research Council
Bellaterra, Catalonia, Spain

sierra@iiia.csic.es

Munindar P. Singh
Department of Computer Science
North Carolina State University
Raleigh, NC 27695-7535, USA

singh@ncsu.edu

xviii Methodologies and Software Engineering for Agent Systems

Leon Sterling
Department of Computer Science and Software Engineering,
The University of Melbourne, 3010, Victoria, Australia

leon@cs.mu.oz.au

Arnon Sturm
Technion, Israel Institute of Technology
Haifa, 32000 Israel

sturm@tx.technion.ac.il

Katia Sycara
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA, 15213, USA

katia@cs.cmu.edu

www.manaraa.com

Gerhard Weiss
Institut für Informatik,
TUM Boltzmannstrasse 3, 85748 Garching, Germany

weissg@informatik.tu-muenchen.de

Michael Winikoff
School of Computer Science and Information Technology
RMIT University
GPO Box 2476V
Melbourne, 3001, Australia

winikoff@cs.rmit.edu.au

Franco Zambonelli
Dipartimento di Scienze e Metodi dell’Ingegneria
Università degli Studi di Modena e Reggio Emilia
Via Allegri 13, 42100 Reggio Emilia, Italy

franco.zambonelli@unimore.it

Contributing Authors xix

www.manaraa.com

Foreword

As information technologies become increasingly distributed and accessible
to larger number of people and as commercial and government organizations
are challenged to scale their applications and services to larger market shares,
while reducing costs, there is demand for software methodologies and applica-
tions to provide the following features:

Richer application end-to-end functionality;

Reduction of human involvement in the design and deployment of the
software;

Flexibility of software behaviour; and

Reuse and composition of existing software applications and systems in
novel or adaptive ways.

When designing new distributed software systems, the above broad require-
ments and their translation into implementations are typically addressed by
partial complementarities and overlapping technologies and this situation gives
rise to significant software engineering challenges. Some of the challenges that
may arise are: determining the components that the distributed applications
should contain, organizing the application components, and determining the
assumptions that one needs to make in order to implement distributed scalable
and flexible applications, etc.

Agent-orientation and Multiagent System (MAS) principles show much po-
tential at satisfying the above desiderata by means of their inherent modularity
and ease with which they can be combined to form new applications. Agent-
Oriented Software Engineering (AOSE) is distinct from object-orientation in
its consideration of agent goal, role, context, and messages as first class en-
tities. In addition, agent-orientation encompasses richer semantics, such as
speech acts or use of ontologies. Agent-orientation offers higher level abstrac-
tions and mechanisms that address additional issues such as knowledge repre-
sentation and reasoning, coordination, and cooperation among heterogeneous
and autonomous parties. These concepts can lead to advanced functionalities,

www.manaraa.com

such as adaptive workflows, matchmaking and brokering services, automated
discovery of components. In addition they can provide increased automation,
techniques for handling open environments and increased flexibility and fault
tolerance. Rich representational capabilities allow more faithful representation
of complex organizational processes.

One of the consequences of our characterizations of AOSE is that agents
have grounds by which to make inferences about new priorities and conse-
quences as the open, uncertain and dynamic environment changes. That is, the
power of inference enables an agent to be adaptable to its changing environ-
ment. Another consequence of our agent-orientation is that one of the desider-
ata of software engineering, namely predictability of behaviour changes from
two perspectives. From the agent perspective, an agent is now empowered to
infer its own range of actions, perceptions and expectations for achieving its
multiple goals. From the perspective of a MAS observer – which may be an-
other agent as well – the range of actions and behaviours in which the agent
may engage can vary greatly based on the unpredictable contexts, the roles of
the agents within these contexts, etc. Therefore, predictability estimates should
be performed in terms of ample tolerances rather than in terms of precise spec-
ification with narrow tolerances. Thus, when designing a MAS an engineer is
no longer specifying exactly how an agent will behave, but she is establishing
the bounds and tolerances, or an envelope of acceptable behaviour, by which
agents may plan their actions and by which observers may judge a MAS be-
haviours.

The other principal consequence is the necessity of incorporating into the
MAS some sort of planning behaviour to enable the agents and the overall
system to plan in order to achieve their goals, and adapt their behaviour to
changing environmental conditions. The endowment of a MAS with planning
abilities provides means for (i) composing agent results and behaviour; (ii)
monitoring the execution of distributed computations; (iii) fusing the resulting
data and control flow; and (iv) automatically determining rollback segments,
should distributed computations fail partially.

However, the same qualities of flexibility, autonomy and openness that make
AOSE so promising, lead to a number of challenges. MAS operate in an open,
unbounded world and thus have imposed upon them the requirements that they
must be context-aware, aware of how the environment conditions the interac-
tions that an agent engages in. Openness also refers to the actual implemented
agent system itself. Even if an initial MAS design begins with a limited num-
ber of agents, new agents or newer versions of agents will most likely be added
to the original MAS at a later date, as requirements for the system change and
new functionalities are required. Because of this openness there is no single
point of resource allocation, synchronization or failure recovery. The envi-
ronment is dynamic and changing, which challenges any software engineering

xxii Methodologies and Software Engineering for Agent Systems

www.manaraa.com

Foreword xxiii

paradigm that requires the explicit enumeration of objects and relationships in
the environment. The MAS distributed computing environment is uncertain, a
characteristic that justifies concerns for partial failure recovery. In distributed
computing where there is no centralized point of control, the failure of any one
computation, communication link or network node can render the distributed
execution state of the MAS application inconsistent, and the resulting inconsis-
tency may be difficult to identify and thus difficult to remedy. As the number
of agents in the MAS increases, the dimensionality of the above concerns be-
comes combinatorial and challenges human perception of control and system
predictability.

The above characterization leads to a number of specific issues that MAS
must address, unpredictably during their life cycle. The most important of
them are:

Communication: considerations include how many different communi-
cation interfaces can or should an agent have for effecting its commu-
nication with its peers and what are the available underlying network
protocols and agent communication languages that will be used.

Coordination: there are a variety of coordination techniques, such as ca-
pability based coordination, team-oriented coordination, auction-based
coordination, which depend primarily on the task that needs to be per-
formed and the coordination attitude of the agent (e.g., cooperative, self-
interested, and deceptive).

Environment: the operating environment can range from the network
operating environment, in which considerations focus on how well net-
work protocols are performing (e.g., through put, transport reliability,
network connection permanence), to the computational environment in
which software capabilities change, to physical and terrain environments
of agent-augmented hardware and robots.

Functionality: this is the identification and allocation of agent roles in
terms of the services or functions that they contribute.

Semantic interoperability: this expresses the issue that arise when two
agents interact. They must be certain when using a vocabulary of terms,
that they are using the same concepts with the same relevant inferences
of relations as the other communicating agent.

The above characteristics and challenges of agent-oriented software devel-
opment stretch the limits of current software engineering methodologies, thus
creating the need to develop new methodologies and tools. The research com-
munity has risen to the challenge by creating in the past years a number of
methodologies, such as Gaia, MESSAGE, Prometheus, and Tropos, among

www.manaraa.com

others. The various chapters in this book endeavour to address the challenges
of AOSE by providing a variety of methodologies and viewpoints that could
guide developers in the various parts of the software lifecycle.

The book is organized in six parts: the first part contains chapters that pro-
vide historical and conceptual underpinnings of AOSE. This part has three
chapters. The first chapter, “Agent-Based Abstractions for Software Develop-
ment” by M. Singh, provides a historical perspective and features of the agent
metaphor that make it well suited for large scale software development. The
second chapter, “On the Use of Agents as Components of Software Systems”
by F. Bergenti and M. Huhns, compares agents to software components and
highlights the similarities and differences, as well as challenges that software
developers face when using agents as system components. The third chapter,
“A Survey of Agent-Oriented Software Engineering Research” by J. Gómez-
Sanz, M.-P. Gervais, and G. Weiss, provides a survey of existing theories,
methodologies and software that can be applied at each stage of agent-oriented
development.

Part II comprises chapters about methodologies for agent-oriented software
development. This part has four chapters. The first chapter, “The Gaia Method-
ology” by L. Cernuzzi, T. Juan, L. Sterling and F. Zambonelli describes Gaia,
its limitations and proposed extensions to overcome these limitations. The
second chapter, “The Tropos Methodology” by P. Giorgini, M. Kolp, J. My-
lopoulos and M. Pistore gives an overview of Tropos and in particular the early
phases of requirements analysis. The third chapter, “The MaSE Methodology”
by S. DeLoach, presents MaSE which is builds upon UML to describe models
of MAS. The last chapter in this part is “A Comparative Evaluation of Agent-
Oriented Methodologies” by A. Sturm and O. Shehory, where a comparison
is made of Gaia, Tropos and MaSE. The comparison is performed along the
dimensions of concepts and properties, notations and modelling techniques,
development process and pragmatics of these methodologies.

Part III consists of chapters that describe special purpose methodologies.
The first chapter is “The ADELFE Methodology” by G. Picard and M.-P.
Gleizes. This chapter presents ADELFE, a methodology for adaptive MAS
where the system’s purpose, and environment are studied during the require-
ments phase. During analysis, adaptive multiagent technology is used. The
second chapter is “The MESSAGE Methodology” by G. Caire, W. Coulier, F.
Garijo, J. Gómez-Sanz, J. Pavón, P. Kearney and P. Massonet. The chapter
presents MESSAGE, which is a methodology that covers analysis and design
phases and uses and extends UML by including concepts of organization, goal,
role and task. The third chapter is “The SADDE Methodology” by C. Sierra,
J. Sabater, J. Augusti, and P. Garcia. The chapter presents work to help a
programmer transition from a set of desired system properties expressed in
equations to an actual MAS through tuning parameters in an agent population.

xxiv Methodologies and Software Engineering for Agent Systems

www.manaraa.com

The final chapter of part III is “The Prometheus Methodology” by M. Winikoff
and L. Padgham. This chapter describes Prometheus, a methodology that has
three phases: (i) specification, where the system’s interface is determined; (ii)
determination of systems goals; and use cases, and (iii) detailed design phase
where the internal agent details are determined.

Part IV consists of three chapters. The first, “The AUML Approach” by M.
Huget, J. Odell and B. Bauer presents Agent UML, a UML-based approach
to the development of MAS. The second chapter is “FIPA-Compliant Agent
Infrastructure” by F. Bellifemine and A. Poggi which presents JADE, a FIPA-
compliant agent infrastructure. The last chapter of this part is “Coordination
Infrastructures in the Engineering of Multiagent Systems” by A. Omicini, S.
Ossowsky and A. Ricci. The chapter adopts activity theory as a basis for mul-
tiagent coordination.

Part V has four chapters. The first, “Engineering Amorphous Computing
Systems” by R. Nagpal and M. Mamei studies the issue of engineering robust
collective behaviour from large numbers of unreliable components. The sec-
ond, “Making Self-Organizing Adaptive Multiagent Systems Work” by J.-P.
George, B. Edmonds and P. Glize studies how to engineer MAS with desirable
emergent properties and sketches an approach to developing such systems by
focusing on engineering each agent’s responses to non-cooperative situations
it may encounter. The third, “Engineering Swarming Systems” by V. Parunak
and S. Bruekner, studies the issues of swarming in terms of self-organization
and emergence. It goes on to provide some initial principles of engineering
such artificial swarming systems. The last chapter of this part, “Online Engi-
neering and Open Computational Systems” by M. Friedriksson and R. Gus-
tavsson , studies the issue of ambient intelligence and introduces an approach
for online engineering.

The final part of the book, Part VI looks towards the future. It includes
three chapters. The first, “Agents for Ubiquitous Computing” by Z. Maamar,
W. Binder, and B. Benatallah, explores the subject of value-added of software
agents to ubiquitous computing environments and discusses the need for new
agent engineering approaches. The second chapter, “Agents and the Grid” by
L. Moreau, M. Luck, S. Miles, J. Papay, K. Decker, T. Payne discusses the po-
tential value-added of software agents to the Grid and in particular Grid service
discovery. The third chapter, “A Roadmap of Agent-Oriented Software Engi-
neering” by Z. Guessoum, M. Cossentino, J. Pavón presents the viewpoint of
AgentLink researchers regarding future developments of agent-oriented soft-
ware methodologies and systems.

Foreword xxv

Katia Sycara

www.manaraa.com

Introduction

Agents and Multiagent Systems (MAS) have emerged as a powerful tech-
nology to face the complexity of a variety of today’s IT scenarios. Several
industrial experiences already testify to the advantages of using agents in man-
ufacturing processes (Bussmann, 1998; Shen and Norrie, 1999), Web services
and Web-based computational markets (Kephart, 2002), and distributed net-
work management (Bieszczad et al., 1998), just to mention a few examples.
Further, several research studies advise on the possibility of effectively exploit-
ing agents and MAS as enabling technologies for a variety of future scenarios,
i.e., Pervasive Computing (Abelson et al., 2000; Tennenhouse, 2000), Grid
computing (Foster and Kesselman, 1999), Semantic Web (Berners-Lee et al.,
2001).

However, there is an emergent general understanding that MAS, more than
an effective technology, represent indeed a novel general-purpose paradigm
for software development (Jennings, 2001; Zambonelli and Parunak, 2003).
Agent-based computing promotes designing and developing applications in
terms of autonomous software entities (agents), situated in an environment,
and which can flexibly achieve their objectives by interacting with one another
in terms of high-level protocols and languages. These features are definitely
well suited to tackle the intrinsic complexity of developing software in mod-
ern scenarios. In fact: (i) the autonomy of the application components reflects
the intrinsically decentralized nature of modern distributed systems (Tennen-
house, 2000) and can be considered as the natural extension to the notions of
modularity and encapsulation for systems that are owned by different stake-
holders (Parunak, 1997); (ii) the flexible way in which agents operate and
interact (both with each other and with the environment) is suited to the dy-
namic and unpredictable situations in which software is expected to operate
today (Zambonelli et al., 2001a); and (iii) the concept of agency provides for
an unified view of the artificial intelligence results and achievements, which
eventually can be used to solve real world problems, by making agents and

www.manaraa.com

xxviii Methodologies and Software Engineering for Agent Systems

MAS act as sound and manageable repositories of intelligent behaviors (Rus-
sell and Norvig, 1995).

In the last few years, together with the increasing acceptance of agent-based
computing as a novel software engineering paradigm, there have been a great
deal of research related to the identification and definition of suitable models,
tools, and techniques to support the development of complex software systems
in terms of MAS (see chapter 3). These researches, which can be roughly
grouped under the term Agent-Oriented Software Engineering (AOSE) (Jen-
nings, 2000; Wooldridge, 1997), are endlessly proposing a variety of new
metaphors, new formal modeling approaches and techniques, and new devel-
opment methodologies and tools, specifically suited to the novel agent-oriented
paradigm.

This book is an attempt to put together in an integrated and organized way a
variety of research results and proposals that, although very diverse, share the
same general goal of facilitating the development of complex software systems
in terms of MAS. An increasing number of scientific papers on the topic of
AOSE can be found in the literature, spread over different conference proceed-
ings, journals, newsletters. Therefore, both newcomers and expert researchers
in the areas sometimes have difficulties in navigating all such material. It is
our hope that this book will help both researchers and students to get a clue of
what is going on in the area of AOSE without having to explore thousand of
papers in the existing digital libraries and without getting lost in them.

Of course, we are aware that the research in the area of AOSE is still at
its early stages. A few research results are already well-assessed, and several
research challenges still need to be faced before AOSE can keep its promises
and become not only a widely accepted but also a practically usable paradigm
for the development of complex software systems in terms of MAS. For these
reasons, in this book, we have clearly separated those concepts and techniques
that are already quite assessed and already provide useful results for practical
use (Parts I, II, III and IV of this book), from those researches that are instead
of a still more investigative nature, and that will try to draw the guidelines for
agent systems in the near-/medium- term (parts V and VI of this book). In
any case, even for those research results that are of a more assessed nature,
we have tried to keep a very critical endeavor, by avoiding to support a spe-
cific technology or approach and instead, when necessary, by integrating the
presentations of different technologies with neutral comparative evaluations of
the techniques.

In particular, the book is organized as follows:

Part I (Concepts and Abstractions of Agent-Oriented Software Engineer-
ing) is introductory, and aims both at clarifying the reasons why agent-
based is a suitable approach to the development of complex software

www.manaraa.com

Introduction xxix

systems (better than existing traditional approaches) and at surveying in
a broad way the different facets of AOSE researchs.

Part II (Methodologies for Agent-Based Software Development) shows
three different methodologies (namely, Gaia, Tropos, and MaSE) that
have been proposed in the past few years as general-purpose approaches
to guide the development of complex MAS, all of which have had great
impact in the research community. For the sake of balance, a compara-
tive evaluation of the three methodologies complete this part.

Part III (Special-Purpose Methodologies) shows four additional method-
ologies (namely, ADELFE, MESSAGE, SADDE, Promotheus) that, al-
though having had a less general impact as of now, exhibit very inter-
esting characteristics making them very suitable for the development of
specific classes of MAS (e.g., adaptive MAS and systems based on intel-
ligent intentional agents) and or specific application areas (e.g., telecom-
munication applications and agent marketplaces).

In Part IV (Tools and Infrastructures for Agent-Oriented Software En-
gineering), we shift the focus from methodologies to infrastructures and
tools. In fact, while methodologies drive the process of building a MAS,
only the availability of appropriate tools and software infrastructures can
make the outcome of this process be a well-engineered software sys-
tems. Conceptual tools like the FIPA standard and AUML, and software
infrastructures such as tuple-based ones and JADE, presented in this part
of the book, are as of now the most promising ones available to engineer-
ing and developers.

Part V (Non Traditional Approaches to Agent-Oriented Software Engi-
neering) put the focus on those innovative approaches to the engineering
of agent-based systems that starts from radically different assumptions
and concepts than those traditionally adopted in software development,
i.e., by relying on self-organization principles and on biologically or
physically inspired solutions. The chapters in this part, dealing with
swarm intelligence, amorphous computing, adaptive MAS, and online
engineering of open systems, may give a rather broad perspective on
these novel approaches.

Part VI (Emerging Trends and Perspectives) is of a more application-
oriented nature and focuses on two future scenarios of use of MAS tech-
nologies, i.e., the Grid and Ubiquitous Computing. The rationale behind
this chapter is to show that, in these emerging scenarios, the abstrac-
tions of agent-based systems will be likely to be widely exploited and,
accordingly, AOSE techniques will be compulsory needed to promote

www.manaraa.com

xxx Methodologies and Software Engineering for Agent Systems

the development of reliable and effective applications. On this base, and
building on the book as a whole, the final chapter of the book delineates
a research roadmap in the area of AOSE.

To conclude this short introduction, we want to emphasize that this book
represents a collective effort of the AOSE community, which would not have
been possible to realize without the contributions of a number of persons, to
which we are greatly indebted. First of all, we thank all the authors who ac-
cepted to contribute to this book and to put notable efforts in contributing orig-
inal chapters summarizing in a readable way their key research results. We
thank Katia Sycara, for the foreword to this book. We thank the AgentLink
Network of Excellence, and all the persons that in the past few years have
participated to the meeting of the Methodologies and Software Engineering
Special Interest Group of AgentLink. Without them, we would have never
reached that broad vision of the researches in the area that has enabled us to
conceive this book. In particular, we would like to thank Michael Luck, coor-
dinator of the AgentLink Network, for having made a great work in collating
the strenghtening the European research community around the key research
themes, such as AOSE. Last but not least, we would really like to thank Kluwer
Academic Press, in the persons of Melissa Fearon and Gerhard Weiss (editor
of the book series on Multiagent Systems of Kluwer) for having supported this
work.

Hope you enjoy reading.

Federico, Marie-Pierre, Franco

www.manaraa.com

I

CONCEPTS AND ABSTRACTIONS OF
AGENT-ORIENTED SOFTWARE ENGINEERING

www.manaraa.com

Introduction

The notion of agency was the ultimate end of a long research debate that
resulted in the general conclusion that no agreed definition for agent can be
found. Still, we can list a number of features that we can use to characterize
agency. Many authors enumerated such characteristics and a common subset
of such lists, that underpin concepts like autonomy and situatedness, are now at
the basis of today agent research. This is sufficient from the scientific point of
view, because it provides a framework for promoting a well-funded research
on agency. Anyway, it is clear today that it is not sufficient to promote the
use of agent technologies in real situations. AOSE took over the big challenge
of spreading agent technologies down to everyday software developers and to
assist them in exploiting all advantages that agents provide.

The three chapters in this part face this challenge frontally and address di-
rectly all issues related to the use of agent technologies in the realization of
industrial-strength software systems. In particular:

Chapter 1, “Agent-Based Abstractions for Software Development” by
Munindar P. Singh presents the historical and conceptual basis that read-
ers need to fully appreciate tools and techniques for AOSE;

Chapter 2, “On the Use of Agents as Components of Software Systems”
by Federico Bergenti and Michael N. Huhns discusses major benefits
and drawbacks that developers face when choosing agents for the real-
ization of a new software system, instead of more mature technology,
e.g., software components; and

Chapter 3, “A Survey on Agent-Oriented Oriented Software Engineering
Research” by Jorge J. Gomez-Sanz, Marie-Pierre Gervais and Gerhard
Weiss guides readers through existing theories, methods, and software
tools that can be applied in each stage of an agent-based development
process.

www.manaraa.com

Chapter 1

AGENT-BASED ABSTRACTIONS FOR
SOFTWARE DEVELOPMENT

Accommodating Complexity in Open Systems

Munindar P. Singh

Abstract This chapter provides the historical and conceptual basis needed to fully appre-
ciate the tools and techniques for agent-based software development. It begins
with a review of the historical development of software technology from stand-
alone to open systems. It discusses the major challenge of increasing complex-
ity as software systems become larger and more open. The chapter presents the
features of the agent metaphor that make it ideally suited for large-scale open
systems development as well as the key technical abstractions that emerge from
the agents metaphor and their ramifications on software practice.

1. Introduction

This chapter seeks to provide a conceptual framework and historical per-
spective to better appreciate the tools and techniques for the engineering of
agent-based software. It is by no means a comprehensive survey, which would
indeed be impossible within the available space and also unnecessary because
others (notably, the chapters in this volume) present more detailed descriptions
of specific technical approaches.

It helps to first understand the nature of software development in general.
We will confine our attention to business applications, especially those that op-
erate within and across enterprises. Software development for enterprise sys-
tems has been notoriously difficult. Computing architectures have gone from
centralized to rigidly distributed (as in client-server systems) to fully open.
Open architectures are characterized by the fact that they enable autonomous,
heterogeneous components to be added and removed dynamically – more on
this below. Open architectures are becoming increasingly common with the
expansion of e-business. A prominent such architecture involves the use of
Web services.

www.manaraa.com

Web Services. The Web services architecture views each component
as a service, which offers a set of capabilities defined as methods (Curbera
et al., 2002a). Services can be invoked and can exchange documents. In
Web services, the invocation parameters and results and the exchanged doc-
uments in general are structured as specified in the eXtensible Markup Lan-
guage (XML) (Box et al., 2000). The Web services approach defines public
service interfaces wherein the methods and the types of their parameters and
results are specified (see http://www.w3.org/TR/wsdl). A challenge that is
unique to open architectures is the discovery and location of the needed com-
ponents. In Web services, this is handled through the concept of a registry
as specified in the Universal Description Discovery and Integration (UDDI)
standard (Shaikhali et al., 2003). Service implementations are published (by
their implementors and promoters) to a registry. A prospective consumer, that
is, anyone seeking a service supporting a particular interface, can contact the
registry and attempt to find matching service implementations. The registry
will typically convey a list of all service implementations matching the given
request. The consumer can then select one of the implementations and invoke
it as appropriate.

Whereas the Web services architecture addresses the challenge of discov-
ering service implementations, it has some shortcomings. First, there is no
encoding of the semantics of the services and the information they process.
Thus matching proceeds on syntactic terms. Second, there is no notion of
trustworthiness or fitness for use in a particular environment. The consumers
are left to deal with these matters on their own.

However, the Web services approach is fast becoming the de facto standard
for structuring large systems. The matters of semantics and trust are handled
off-line but even then, there is significant payoff in being able to configure
large systems flexibly and dynamically, which is indeed enabled by Web ser-
vices. Therefore, it is helpful to think of modern agent system development as
naturally layering on top of Web services and exploiting their existing features,
while augmenting the architecture as necessary. Moreover, because the Web
services architecture echoes some key properties of agents, this layering is in
many ways quite natural provided we are astute enough not to want to replicate
every agent idea within Web services: it would make the resulting systems re-
dundant and conceptually harder to understand, especially for the vast body of
software practitioners who are our ultimate audience.

Scientific Applications. Although this chapters limits its attention to busi-
ness applications, it is important to briefly discuss the emerging convergence of
business and scientific applications. Business settings now frequently involve
computation-intensive analytical and decision-support components, often with
associated dedicated hardware, which are the hallmarks of scientific applica-

6 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

Agent-Based Abstractions for Software Development 7

tions. Scientific settings now frequently involve considerations such as access
control and information modeling, which originated in business settings. The
specific technologies used in these arenas are also converging. Previously,
business settings involved traditional and federated databases with ontologies
and multidatabase query languages, which have led into business processes,
as generally understood. And, previously, scientific applications involved a
greater emphasis on hand-construction of control and data flows, which have
led to what are sometimes termed scientific workflows (Vouk and Singh, 1997).
Just as the business side was evolving Web services architectures, nominally
running over standard protocols such as HTTP, the scientific side was evolv-
ing generic metacomputing frameworks culminating in the so-called Grid ar-
chitectures (Foster and Kesselman, 1999) (see chapter 20). More recently, the
commonalities of the Web services and the Grid architectures have been recog-
nized. To exploit the larger body of work on Web services, the Grid community
is developing the Open Grid Services Architecture (Foster et al., 2002), but the
intellectual payoffs are likely to benefit both sides.

Along the same lines, the recent IBM initiative on autonomic computing
seeks to bring easy configurability and manageability to large-scale computa-
tional resources. Autonomic computing ends up incorporating ideas from the
Grid and from Web services; indeed, some of the major remaining problems
that arise in the context of autonomic computing are those for which agents
can be a natural approach (Bigus et al., 2002).

Organization. The rest of this chapter is organized as follows. Section 2
offers a historical perspective on software development with respect to how the
computing and communications infrastructure has evolved and how software
development has sought to keep pace with it. Section 3 introduces the agents
concept. Section 4 discusses some key approaches for the development of
agent-based software. Section 5 offers a discussion of some critical emerging
directions for research into methodologies and software engineering for agents.
Section 6 summarizes our main points.

2. A Brief History of Software Development

The first generation of research in computing was based on centralized ar-
chitectures and considered the challenges of programming in the small. Al-
though all these challenges may have not been addressed, much progress has
been made in techniques for programming data structures and algorithms in
a robust and reusable manner. The approaches developed there are still of
value because all architectures involve components, which must be robustly
programmed.

However, the arrival of distribution in enterprise systems introduced a num-
ber of complications. In principle, technologies that support distributed sys-

www.manaraa.com

tems enable information that existed in isolation within enterprises to be com-
bined and put to good use. However, when the low-level challenges of net-
working were overcome, the move to distributed systems only pointed out the
painful reality: that the information resources so connected existed in islands
of automation, with little more than a stove-pipe approach to combine them
and extract any additional value from them. The killer problem here was het-
erogeneity, that is, the mismatch of the semantics of the information stored in
the various resources. Most often, the semantics was not modeled at all, mak-
ing it difficult if not impossible to reconcile the various resources with bounded
practical effort.

The above problem had not quite been solved when the underlying architec-
ture evolved further. Increasingly, with the expansion of the Internet into the
commercial sector, it became clear that software systems should interoperate
across enterprise boundaries. The Web is the major example of a substrate on
which such open information environments can be built. Whereas the envi-
ronments vary in their scopes, they are unified by the fact that the components
of which they are composed are not only heterogeneous but also autonomous.
Components come and go all the time. Thus the exact composition of such an
environment is never fixed and never to be taken for granted.

The best approaches for the preceding kind of heterogeneous settings in-
volved the use of static information models or database schemas for the differ-
ent resources followed by the integration of such models. Schema integration
is just barely effective when dealing with heterogeneous information systems,
because any changes to the individual schemas renders the integrated schema
invalid. When we attempt to apply such an approach to open environments, it
simply cannot and does not make sense. The schemas of the components can
change rapidly; moreover the constituent parties are under no compulsion to
collaborate.

The systems in question are open , because they reflect the openness of the
organizations in which arise. In a certain sense, the underlying businesses and
the organizations within which computation occurs have not changed due to
modern technologies. For example, there clearly were supply chains centuries
before there was computing. Even from the computational standpoint, supply
chains were somehow accommodated in the systems that emerged during the
early days of computing. In a practical sense, however, modern technologies
have affected businesses and organizations greatly. One way to understand
this dichotomy is as follows. The supply chains that existed in days gone by
were fraught with many problems. Early uses of computing helped improve
the efficiency of how supply chains were built, executed, and monitored. But
they left many shortcomings; specifically, these were rigid approaches and did
not handle opportunities and exceptions well. This has greatly limited their
effectiveness in practical settings. Further, the improvements in the computing

8 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

Faced with such practical challenges from the environments of today, tra-
ditional computer science has little to offer in the way of powerful abstrac-
tions and flexible techniques. The problems call for taking a broader view of
computation, one which remains scientifically principled but accommodates
considerations of the organizations within which computations occur and an
understanding of the user needs that these computations seek to serve.

A number of definitions of agents have been propounded over the years.
Some definitions emphasized agents in user interfaces, typically with some
sort of a persona, typically represented in some suitable graphical manner.
Such kinds of agents are not of direct relevance to the present topic. The
more promising class of definitions stated that an agent is capable of interact-
ing with other parties. Some definitions were tied to specific implementation
technologies such as being based on theorem provers, or using internal data
structures corresponding to the so-called mentalist concepts, such as beliefs or
knowledge, goals or desires, intentions, and so on. By considering the internal
construction of an agent, these definitions restrict their universe of discourse
unnecessarily and eliminate the possibility of being applied in open settings,
whose participants are heterogeneous. Still other definitions presuppose some
notion of the rationality of agents. Such definitions too are inappropriately
restrictive, because they presume to incorporate a kind of rationality and con-
ceivably can limit the autonomy of agents (see the discussion of autonomy
below).

For the above reasons, a good working definition of an agent is that it is a
persistent computational entity that can perceive, reason, act, and communi-
cate (Huhns and Singh, 1998). This definition leaves unspecified the matter
of how an agent is constructed, whether it has any beliefs and intentions, and
whether it is rational. In this manner, it can apply to a variety of practical com-
putations that are found in open settings. The agents so defined can thus reflect
(in an information environment) the autonomy and heterogeneity (in the real
world) of the participants whom they represent.

The challenges of modern applications in open systems and the potential
flexibility of agents suggests that agents will form an excellent basis for solu-
tions that realize the given applications. But how would we go about building

Agent-Based Abstractions for Software Development 9

and communications infrastructure has raised expectations in terms of what
kinds of efficiency, flexibility, agility, and robustness are expected.

In other words, while the real world has always been open in the sense
described in the above introduction, the technologies that we use to build and
manage processes have imposed their own limitations. What is needed now is
an approach that avoids these limitations. Enter agents.

3. Agents and Multiagent Systems

www.manaraa.com

such solutions? Computer science is a science of abstractions; Devlin makes
a similar point recently in the context of what computer scientists ought to be
taught (Devlin, 2003). Clearly, to build our solutions, we would need to con-
sider and somehow involve the key abstractions that characterize agents. This
brings us back to the discussion of possible definitions for agents.

The recent history of agent technology provides us with a useful hint for a
reasonable, pragmatic direction. A few years ago it was quite the in thing in
the agents community to offer and debate possible definitions of agents. How-
ever, this work fell out of vogue when the research community realized that
an agreement on definitions was impossible and likely not even needed. What
matters most, as usual, is the purpose for which one is creating a definition.
If the purpose is to show how to construct individual agents, it might be rea-
sonable to specify the internal designs of agents. However, if the purpose is to
specify an open system generically so that different agents could participate in
it, then the emphasis should be on the agents interact rather than how they are
constructed. A more radical stance, but along the above lines, is to not worry
about formal definitions, but about a test for agenthood (Huhns and Singh,
1999). The test proposed by Huhns and Singh essentially considers how an
agent interacts with others or changes its behavior in the presence of others.

When we begin to emphasize interactions, our interest naturally shifts from
agents (in other words, single-agent systems) to MAS. Indeed, it is a reason-
able position to claim that in practice there are no “interesting” single-agent
systems. If you must have agents, you can only have them as part of a MAS.
The justification for this point is that if there is no interaction and no openness,
you would be equally well-served by the abstractions of traditional computer
science. Why introduce agents if you are not going to benefit from their special
qualities?

Of course, the whole point of this exercise is to show how agents match
up with the requirements of open systems. Recall that we mentioned above
that open systems are systems consisting of components that are autonomous,
heterogeneous, and dynamic. Now let us consider the following essential ab-
stractions of the concept of agency or alternatively of the agent metaphor.

Autonomy. Autonomy corresponds to the independence of a party to act as
it pleases. In its broadest construal, autonomy reflects the political autonomy
of the participants in a business transaction. No one can make you sell or buy
anything; no one can make you negotiate with or even listen to another party;
and, no one can make you use any particular reasoning doctrine. In particular,
an autonomous party need not even be “rational” in any external sense, because
requiring so would constrain its autonomy.

Assuming the autonomy of the interacting parties has the nice effect that
one’s approach, if it accommodates autonomy, can then easily apply to virtu-

10 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

ally any situation. Such models can accommodate even some cases that are not
a reflection of autonomy in the true sense. For example, infrastructural diffi-
culties might cause a participant to stop responding to messages. Others who
can handle autonomous participants can naturally accommodate the vagaries
of the infrastructure in the same framework. However, it can be important, for
example, to decide how much to trust someone to know whether their behav-
ior as manifested was an exercise of their autonomy or caused by failures in
infrastructure.

In general, unfettered computational autonomy would have the same unde-
sirable effects as unfettered autonomy in the real world. Moreover, to make
any kind of a complete computational model and to make any kind of reliable
predictions, we have to assume that the participants’ autonomy is constrained
in some way. Typically, constraints on autonomy that are specified based on
interactions are termed protocols.

Heterogeneity. Heterogeneity corresponds to the independence of the de-
signer of a component to construct the component in any manner. Heterogene-
ity can apply to the information models of the components or to their process
models. Usually, in functioning systems, heterogeneity comes about because
of historical reasons. No one sets out to design a heterogeneous system, but
large systems end up being heterogeneous. Conversely, when we are laying out
the parameters of an open system, it is important not to assume homogeneity
of internal constructions. Ultimately, for components that successfully func-
tion together, there is some limit to their heterogeneity with respect to each
other. That is, there must be a specification of some commonality. In the case
of information models, the commonality is captured through a shared ontol-
ogy (Gruber, 1991; van Harmelen et al., 2002); this is relevant to agents, but is
not specific to agents because it also arises wherever heterogeneous informa-
tion sources are to be combined. In the case of process models, the commonal-
ity is captured through an approach such as specifying the exposed significant
events (Singh, 2003). The idea is that the signatures of the actions of the agents
that are of consequence to others are exposed without revealing the internal
details of construction. These signatures could potentially be standardized and
indeed are, for example, in approaches for the two-phase commitment pro-
tocols of distributed database transactions (Gray and Reuter, 1993). Anyone
implementing an agent to the specified standard would be required to expose
the appropriate significant events but would not reveal proprietary details of
internal construction.

Dynamism. Dynamism corresponds to the independence of the administra-
tor of a system to configure it flexibly and to change its configuration as needed
without explicitly notifying the relevant parties (the other members of the sys-

Agent-Based Abstractions for Software Development 11

www.manaraa.com

tem). Open systems are maximally dynamic, because in principle they need no
administrator at all. In practice they do need some administrative functionality
for purposes such as monitoring and security, and to restrict participation of po-
tential members based on applicable policies. In principle, these functionalities
could be distributed among the members, so there would be no administrator,
but usually there are sociopolitical reasons for maintaining a responsible party
in the system.

Communications. Any components that share their environment will in-
teract – through the environment as it were. One will make changes to the
environment that another will observe. When we conceptualize the compo-
nents as agents, their interactions take on a distinctive flavor. Clearly, agents
can continue to interact through their environment, for example, by bumping
into each other if they are robots or by modifying files or databases if they are
information agents. However, interactions through the environment have the
effect that they can violate the autonomy of the interacting parties. That is,
none of the interacting parties may have a choice but to interact. For example,
the bumping robots may have no choice but to bump; the bumping can cause
one or both of the parties to be knocked off course. Likewise, an information
agent may need to modify some data item to complete a task and another in-
formation agent may need to read that data item. Observable modifications on
data force the other party to note the modified values.

We define communications as those interactions that preserve the autonomy
of the parties concerned. There is no requirement that communications are
planned or that there is a structure of beliefs and intentions to back them up. In
this sense, this concept is based on the concept of autonomy; if a kind of inter-
action is autonomy-preserving for the parties concerned, then it qualifies as a
communication. Clearly, both bumps and data modifications can be used as a
means of conveying information in a given environment. At the lowest levels,
communications will be implemented via some physical (that is, environmen-
tal) means, for example, by speaking or by sending packets down a data link.
But if it is up to the parties to communicate as and when they please (that is, to
send and to receive), then the interaction counts as a communication.

Communication is one of the most important agent abstractions. It is often
taken for granted and sometimes confused with low-level data transmission,
which is merely the mechanics of communication. The semantics of commu-
nication has been intensively studied. Suffice it to say that there are two major
kinds of approaches based on mentalist and social concepts, respectively. As
explained above, mental concepts deal with the internal construction of agents
and so do not apply in open settings. Social concepts have broader applicabil-
ity. A critical review of the literature is available in (Singh, 1998).

12 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

Protocols. Communications are not easily studied in a stand-alone manner.
When we do not have access to the internal construction of the communicat-
ing agents, it is simpler and more appropriate to characterize combinations of
communicative actions. These combinations are protocols, corresponding to
the constraints on agent behavior that we alluded to above. In simple terms, a
protocol states when and how an agent may communicate with other agents.
To give a simplistic business example, a protocol may call for an agent to give a
price quote when requested, to pay for items it ordered when they are received,
and so on.

Protocols are studied in other branches of computer science, especially net-
working. Networking protocols, for example, constrain the messages and re-
sponses that communicating parties can send to one another. These protocols
typically specify the data encodings for various terms, such as headers, to be
communicated. Rigid specifications have been thought essential to ensure reli-
able implementations. However, for agents we wish to maximize their flexibil-
ity (in other words, limit their autonomy as little as possible). Accommodating
flexibility proves quite challenging, especially to ensure that the agents behave
correctly with respect to a protocol despite the flexibility allowed.

Commitments. Whereas the study of communications traditionally was
based on mentalist concepts, the study of protocols has always been framed in
social concepts. We use commitments as the canonical social concept for this
purpose (Singh, 1999a). Although other such concepts can be defined, commit-
ments are adequate for our present purposes. A commitment involves a debtor,
a creditor, a condition or action, and a context. The basic idea is that the debtor
is obliged to the creditor to bring about the stated condition or perform the ac-
tion; usually even actions are modeled as conditions. The given commitment
obtains within the context, which can refer to the organization such as a virtual
enterprise or the state of North Carolina or even a trading abstraction such as a
supply chain. Commitments can be manipulated by means such as being dele-
gated (change the debtor), assigned (change the creditor), canceled (when the
debtor would break a commitment), or released (when the creditor or context
would release the debtor). Manipulations, especially cancellations, are obvi-
ously risky. They are constrained through further metacommitments, which are
commitments that specify the circumstances under which base-level commit-
ments can be manipulated. Importantly, adding metacommitments makes it
possible to model many of the practical kinds of protocols in the applications
of interest (Yolum and Singh, 2002).

Agent-Based Abstractions for Software Development 13

4. Agent-Based Software Development

Broadly speaking, agent-based software development is about creating tech-
niques and methodologies that exploit the key features of agents. The key fea-

www.manaraa.com

tures of agents were introduced in the above discussion. Since there is some
variability among these abstractions, there is also some variability among the
programming abstractions that result from them. The other chapters in this col-
lection provide a thorough treatment of the major such variations, so it would
be superfluous (and, in any case, impossible) for us to include such discus-
sions here. Instead, what we can do is to consider each of the key features of
agents and study how they can be captured as computing abstractions, giving a
representative means of doing so. Readers can then use the simplified discus-
sions below as bases for framing the rich variations that are introduced in the
subsequent chapters of this volume.

Autonomy. For practical purposes, the very use of an agent-based approach
confers a certain level of autonomy on the participating components. The main
methodological enhancements that result from autonomy are that the agents
are proactive rather than merely reactive. They can initiate activities and thus
participate in a richer variety of patterns of interaction than studied in conven-
tional software engineering. As an example of this, a classical inventory of
the major software engineering patterns includes over ten patterns (Shaw and
Garlan, 1996), none of which adequately captures the proactivity of the partic-
ipants. To be useful while being autonomous, agents should also be persistent,
because otherwise a trivial way to get around an agent’s autonomy would be to
kill it and start another instance. Persistence means that the agents can partic-
ipate in elaborate conversations and carry on long-lived transactions (more on
this below).

Heterogeneity. As mentioned above, information heterogeneity is handled
through conventional means such as ontologies. The deeper, process hetero-
geneity is constrained through a specification of the significant events that are
exposed. The significant events along with so-called skeletons, which prescribe
the allowed transitions on which the stated events occur. Some methodologies
incorporate such skeletons and offer ways in which to create correct skele-
tons based on an examination of the desired interactions among the various
agents (Huhns et al., 2002; Singh, 2000).

Dynamism. Dynamic configurability is one of the strengths of agent archi-
tectures and implementations. Agent approaches pioneered techniques vari-
ants of which are widely used, for example, in UDDI. However, the deeper
challenge is not of discovery, which UDDI addresses, but of selection, that
is, choosing an appropriate service implementation from among the several
that may have been discovered. Some of the most relevant agents approaches,
which are largely not yet incorporated into commercial approaches, involve

14 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

matchmaking. Well-engineered agent-based systems would usually involve a
component for matchmaking. Recent approaches consider matchmaking based
on semantic descriptions of Web services (Trastour et al., 2001). An alterna-
tive class of approaches is based on considering the quality of service that is
obtained from a given implementation. A recent approach introduces a con-
ceptual model for quality of service and embed it within an architecture where
service selection is considered an integral component (Maximilien and Singh,
2002). Another recent approach enhances traditional recommender systems to
handle service, rather than just product, selection (Sreenath and Singh, 2003).

Communications. The communications language is typically broken into
three main components. The transport layer provides messaging, usually reli-
able to some limited level. The content layer provides a means for expressing
the relevant domain details; it is typically associated with an ontology, which is
specified outside of the communication language per se. Computationally, the
greatest emphasis has been on the communicative acts. The communicative act
layer specifies what the philosophers term the attitude of the communication,
for example, whether the communication is an assertion, a directive, a promise,
and so on. Depending on one’s theory, this set of primitives can vary, but is
typically a small number (under ten). Whereas it is usually clear what com-
municative act is required for what situation, practitioners have some difficulty
with choosing the correct one in each case. Consequently, there is a tendency
to choose just one communicate act (usually, this is an act corresponding to as-
serting a fact and is called “assert” or “inform”) and load it with the meanings
of all the other communicative acts. There have been some attempts at coun-
tering this tendency through rich models of dialogue and argumentation, with
increasing success (Pasquier and Chaib-draa, 2003), although these approaches
have yet to be expressed in hard-core deployed software methodologies.

Protocols. The specification of protocols has drawn a lot of attention.
These approaches consider how the requirements for communication may be
captured. One class of approaches emphasizes the communication aspect of
protocols by beginning from rigidly specified interactions and systematically
liberalizing them to accommodate additional behaviors. The method of choice
is to capture the semantics of the protocols and reason about the semantics to
enable alternative executions (Chopra and Singh, 2003).

Commitments. Some approaches combine these with the specification
of significant events. The earlier work on commitments assumed that the de-
sired commitments and metacommitments were determined directly by a de-
signer based on an understanding of the interactions desired. Recent work
has yielded more precise operational formulations of commitments, which can

Agent-Based Abstractions for Software Development 15

www.manaraa.com

The study of agents for software development has led to a vibrant body of
work. The rest of this volume stands testament to the variety of technical chal-
lenges that have been explored, techniques that have been invented, method-
ologies that have been formulated, and systems that have been constructed.
These approaches exercise to varying degrees the concepts introduced above.

However, open systems offer a larger set of challenges than have been ad-
equately addressed in the current approaches. This is not a criticism of the
existing approaches, because it would have been foolish to attack the deeper
problems before the basic challenges had been resolved. Indeed, there is great
value in being conservative so that one’s approach has a better chance of suc-
cess and thus a better chance of influencing the practical computer science
community.

The success of the basic technologies for e-business, however, naturally
draws attention to some outstanding challenges. At the same time, the cred-
ibility of the existing agents approaches suggests that agents approaches may
have something to offer. In fact, we would go further and suggest that agents
approaches are the only viable means for addressing these problems.

Pragmatics. We alluded above to the overarching problems of semantics
and trust. There has been much progress in the formulation of languages and
algorithms for capturing the semantics of information. But there is another side
to the semantics, which we term pragmatics, which is not adequately handled
by current approaches (Singh, 2002). In simple terms, pragmatics considers
the usage of information, for example, within potentially elaborate contexts
of interactions and business processes. Pragmatics is dynamic and, therefore,
needs abstractions that can better accommodate changing contexts. Such ab-
stractions are being developed, but they remain to be incorporated into software
engineering techniques.

Trust. The challenge of trust is in some ways easier to motivate. In an open
system, you have no control of the participants’ behavior. So how can you trust

16 Methodologies and Software Engineering for Agent Systems

then be used as a basis for building systems (Fornara and Colombetti, 2002).
Temporal logic approaches now exist in which the semantics of commitments
can be expressed and reusable patterns of interaction involving commitments
can be formalized (Xing and Singh, 2003). These patterns can be used as a
basis for designing a MAS with some guaranteed properties about the result-
ing interactions. Other recent work considers the methodological aspects of
coming up with the right commitments based on an analysis of the desired in-
teractions (Wan and Singh, 2003). This work is in the spirit of (Huhns et al,,
2002; Singh, 2000) but geared toward commitments.

5. Critical Directions

www.manaraa.com

them (or those that are indeed trustworthy)? Current approaches for open ar-
chitectures do not have a principled means for supporting trust. Traditional
approaches have little to say except via support for representations such as cer-
tificate chains (Clarke et al., 2001). But, even in the best such approaches,
certificate chains do not offer trust. They may offer a weak form of authen-
tication, but the question of trust is left entirely to the user, who must decide
how much trust to place in a given chain of credentials. The agents approaches
have a natural advantage in developing refined notions of trust. Some of this
work has a philosophical flavor, but computational approaches are emerging as
well (Yu and Singh, 2002). Although these have yet to be mapped into practi-
cal methodologies, there is work underway to develop methodologies and thus
to complete this aspect of the picture.

Monitoring and Compliance. Another major challenge for open systems
is to determine whether the participants are complying with the applicable rules
and policies. As remarked above, because the participants are autonomous, the
only constraints we have on their behavior are the commitments into which
they have entered. But how do we know that they are behaving according
to their commitments? There is clearly a need for verifying compliance, for
example, to ensure correct behavior. Trust does not replace compliance veri-
fication; instead methods for estimating trustworthiness depend on knowledge
of whether a given party has complied with its commitments in the past. The
problem of compliance is made harder by the fact that open systems are dis-
tributed and the information necessary to make the right evaluations may not
be present at a given central site. In other words, monitoring interactions is
difficult. An early work along these lines is (Venkatraman and Singh, 1999),
but accommodating compliance checking and, more importantly, compliance
verifiability into design methodologies remains an unresolved challenge. The
basic idea would be to design MAS so that monitoring and compliance check-
ing were an integral part of the design, thereby helping the participants develop
increased trust in the system while it is deployed and used.

Agent-Based Abstractions for Software Development 17

6. Conclusions
We presented a conceptual overview of the main abstractions associated

with the concept of agency. We argued how the abstractions that correspond to
MAS and to interactions among agents fit naturally with possible solutions to
the challenges of open systems and showed how they are given a computational
interpretation in modern modern methodologies and approaches for software
engineering of agent-based systems.

www.manaraa.com

The work described in this chapter was partially supported by the National
Science Foundation through grants ITR-0081742 and DST-0139037. I have
benefited greatly from discussions of these topics with several people, most
notably, Mike Huhns, Amit Chopra, and Ashok Mallya. I thank
Franco Zambonelli for helpful comments on an earlier version of this chapter.

18 Methodologies and Software Engineering for Agent Systems

Acknowledgments

www.manaraa.com

Chapter 2

ON THE USE OF AGENTS AS
COMPONENTS OF SOFTWARE SYSTEMS

Federico Bergenti and Michael N. Huhns

Abstract Software agents are increasingly being used as building blocks of complex soft-
ware systems. In this chapter we discuss the benefits and the drawbacks that a
developer faces when choosing agents for the realization of a new system, in-
stead of a more mature technology such as software components. In particular,
we first compare agents to components and then highlight the differences and
similarities engendered by the metaphors and abstractions that each provides.
Then, we concentrate our comparison on reusability because of general agree-
ment that reusability is one of the most important features to consider when
adopting a development technology. We exploit agent-oriented concepts to de-
fine formally an asymptotic level of reusability, and we show how agents and
components approximate it. The result of such a comparison is that agents are
intrinsically more reusable than components.

1. Introduction

The creation and further development of AOSE in the last decade has pro-
moted agents as a viable new way to develop complex software systems. AOSE
gives to the developer all the flexibility and the expressive power of agents and
it helps with the management of the software lifecycle in an attempt to improve
the quality of the resultant software products.

During its short history, research on AOSE has undergone an important
change of focus: initially it was meant only to provide methodologies and tools
to build agent-based systems; today it is more concentrated on understanding
the features that an agent-based approach can bring to the development of con-
ventional software. This change of focus is not trivial and it corresponds to a
radically different approach in adopting agents during the evolution of the soft-
ware lifecycle. The first approach is based on choosing agents as the very basic
abstraction of the development, before actually starting the software lifecycle.
Such a decision is taken for reasons that fall outside of the software lifecycle

www.manaraa.com

and is generally based on the nature of the system or on the complexity of the
problem at hand.

The choice of agents as the very basic abstraction for development allows
adopting the agent-oriented mindset for the entire lifecycle, from analysis of
early requirements to the retirement of the system, as the Tropos methodol-
ogy (Bresciani et al., 2001) suggests. The major drawback of this is that often
there is no reasonable motivation for choosing agents to develop conventional
systems, e.g., word processors and financial planning systems. This is the rea-
son why a more modern approach to AOSE tends to move the decision on
adopting agents after (or during) the phases for requirement analysis and re-
quirement specification. The developer is not forced to envisage his/her system
in terms of agents, rather he/she can concentrate on the requirements that will
drive the subsequent design. The major disadvantage of this approach is that
the developer may not exploit interesting features of agents, e.g., emergent be-
havior and generalization, because he/she has concentrated too much on the
concrete requirements that come directly from the client.

Besides this drawback, the more recent approach has highlighted the prob-
lem of understanding when and how the developer should prefer agent tech-
nology instead of any more traditional, and possibly more mature, technology,
such as object-oriented technology. In this chapter we address a particular as-
pect of this problem and we present the motivations for choosing agents instead
of a technology that resembles agents from many points of view: software
components (Szyperski, 1998).

In the following section we compare agents and components by taking into
account five aspects that they share. Our results have maximal generality, be-
cause our analysis is not bound to a particular technology. In section 3 we
extend the depth of our comparison by concentrating on reusability, which is
one of the most important aspects of a development technology. We begin this
by formally defining an asymptotic level of reusability, and then show how
agents and components approximate it. The result of such a comparison is that
agents are intrinsically more reusable than components. Finally, in section 4,
we briefly discuss the implications of our comparison results.

20 Methodologies and Software Engineering for Agent Systems

2. Software Agents vs. Software Components

Since the first release of the FIPA specifications in 1997 (see http://www.

fipa.org), researchers clearly understood the possibility of using agents as
software components capable of exhibiting interesting characteristics, e.g., au-
tomatic reasoning and goal-directed behavior. In addition, FIPA chose to en-
able communication among agents by means of a CORBA interface, and this
emphasized even more the strong interrelation between such abstractions. The

www.manaraa.com

On the Use of Agents as Components of Software Systems 21

long (and sometimes pointless) debate on the differences between agents and
objects, e.g., (Wooldridge, 2000), originated from this comparison.

Component-oriented software engineering proposes extensions of objects,
e.g., Web Services (see http://www.w3.org), CORBA components (Suhail,
1998), JavaBeans (see http://java.sun.com), and .NET components (see
http://www.ecma–international.org), as final a answer to the strong need
of reusable building blocks that can be assembled to realize complete systems.
Such components are interoperable across networks and (possibly) languages
and operating systems, to give a developer maximal freedom in the deployment
of a system. Nevertheless, the long-pursued dream of component-oriented soft-
ware engineering does not end with the realization of a technology for reusable
units of software, but it considers also the following ideas:

Commercial Off-The-Shelf (COTS) components, i.e., components that
are available in a public market and that are assembled to create a value-
added system. The quality and the cost of the system basically depend
on the quality and costs of every single COTS component. Market forces
should help in decreasing costs while increasing the quality of available
components; and

Automatic assembly, i.e., the possibility of lowering the cost of the pro-
cess of assembly of components through the use of automatic technolo-
gies. The quality and cost of the assembly process depend directly on the
quality and cost of the available technologies for automatic assembly.

1

2

The use of COTS components combined with automatic assembly can lower
the cost of a component-based system down to the direct investments related
to each single component, summed to the cost of the technology for automatic
assembly. Similarly, the quality of a system increases according to the quality
of single components and of the technology for automatic assembly.

Our comparison between agents and components starts from the following
table, where we show some important aspects of components and associate
them with their agentized counterparts. More precisely, we consider the most
important features of the agents’ metamodel and compare them with the cor-
responding features of the components’ metamodel. In order to give maxi-
mal generality to our results, we avoid considering any particular metamodels,
e.g., the Microsoft .NET metamodel for components or the SMART frame-
work (Luck and d’Inverno, 2001) for agents.

State Representation. Both agents and components are abstractions that
comprise a state, but they have very different means to describe and to expose
it to the outer world. The state of a component is represented though a set of
attributes and a set of relations with other components. Attributes and relations
can be public, i.e., other components can manipulate them directly.

www.manaraa.com

22 Methodologies and Software Engineering for Agent Systems

An agent has a mental state, i.e., its state is represented in terms of what
it knows, e.g., its beliefs, and what it is currently pursuing, e.g., its intentions.
The main differences between such models for representing the execution state
are:

Agents cannot manipulate the state of another agent directly, but can
affect it only through communication;

Agents have an explicit representation of their goals;

Agents have explicit knowledge of their environment, including other
agents in the environment; and

Except for a unique identifier, agents do not have public attributes.

1

2

3

4

One of the main advantages of the agents’ approach is that agents can use
general-purpose reasoning techniques to support deduction and means-end rea-
soning. On the contrary, the attributes and relations of a component’s state are
not structured in a logic framework, so it is difficult to use general-purpose
techniques; any deduction and planning process must be coded explicitly in
the methods of the component.

Communication. The main difference between agents and components
is in the mechanism they use to communicate. Agents use declarative Agent
Communication Languages (ACLs), while components use metaobject proto-
cols (Kiczales et al., 1991). In the agent-oriented approach, a message is sent
only in an attempt to transfer part of the sender’s mental state to the receiver.
Let’s take the FIPA ACL as an emblematic example: it defines performatives,
i.e., semantic message types, together with feasibility preconditions, which
must be true for the sender to send the message and rational effects, which are
why the sender sent the message. When an agent receives a message, it can
assert that the feasibility precondition holds for the sender and that the sender
is trying to achieve the corresponding rational effect. This is basically a rather
knotty way to let the receiver know that the sender wanted the receiver to know

www.manaraa.com

that the feasibility precondition holds for it and that it is actually bringing about
the rational effect. The advantage of using a structured ACL, instead of a more
natural exchange of representations of goals, is that it simplifies the develop-
ment of reactive agents capable of complex interactions. Reactive agents with
no reasoning capabilities can exploit the performatives of the ACL as triggers
that activate the state machine of the underlying interaction protocol. This is
what JADE (Bellifemine et al., 2001) (see chapter 13) and similar platforms
provide.

In the component-oriented approach, a message is sent for two reasons. The
first is to directly manipulate the state of the receiver. This use of communi-
cations violates the autonomy of the component, which should be solely re-
sponsible for its own state. Most real-world technologies for implementing
components prohibit direct manipulation of states, in an attempt to satisfy a
software engineering goal of minimizing this sort of coupling among compo-
nents. The second reason for sending a message is to force the receiver to
execute the body of a method for the sender without explicitly communicating
to the receiver why it is being forced to do so. The responsibility for such an
execution is completely that of the sender: it is responsible for guaranteeing
that preconditions hold and for causing any changes in the rest of the system
that might arise during the complete execution of the method.

Delegation of Responsibility. As we have just pointed out, both for agents
and for components the delegation of responsibility is based on communica-
tion and the differences in the way they delegate responsibilities justify the
differences in their communication models. In the component-oriented model,
the sender is solely responsible for the possible outcomes of a message: it does
not need to say anything more to the receiver than “please do this under my
responsibility.” Strictly speaking, components do not delegate responsibility
to other components at all. In the agent-oriented model, the receiver is solely
responsible for the outcome of its own actions and the sender needs to say also
why it is requesting the service. A very important communicative act that an
agent can perform is delegating one of its goals to another agent, e.g., through
the FIPA achieve performative. This special communicative act, known as
goal delegation (Castelfranchi, 1998), is the basic mechanism that agents use
to delegate responsibilities.

The components’ metamodel does not comprise an abstraction of goal and
components can only use task delegation. Components achieve their (implicit)
goals by forcing other components to perform actions; agents might achieve
their (explicit) goals by delegating them to other agents. This is the reason why
it is common to refer to the agent-oriented communication model as declara-
tive message passing: agents can tell other agents what they would like for
them to do without explicitly stating how to do it. On the contrary, imperative

On the Use of Agents as Components of Software Systems 23

www.manaraa.com

message passing is used for the component-oriented approach, because com-
ponents cannot say to another component what to do without also saying how
to do it.

The possibility of using only task delegation is a strong limitation for com-
ponents, because goal delegation is a more general mechanism. First, task
delegation is a special case of goal delegation: the delegated goal has the form
done(a), where a is an action, just like for the rational effect of the request per-
formative in the FIPA ACL. Then, task delegation may inhibit optimizations.
Consider, e.g., a component S with a goal g that needs component R to perform

and to achieve it; S would ask to R to perform and then it would ask R
to perform As the two requests are not coupled though the underlying idea
that S is trying to achieve g, R cannot exploit any possible cross-optimization
between and

If S and R were two agents instead of two components, S would simply
delegate g to R and then R would decide autonomously the way to achieve it,
i.e., it would decide how to perform and This approach couples and

through g, thus enabling R to perform cross-optimizations between and

Interaction between Parties. The different communication models in-
fluence the way agents and components open themselves to the outer world.
Components use interfaces to enumerate the services they provide and to tell
clients how to get in contact with them. Sophisticated component models,
e.g., (Meyer, 1997) equip interfaces with preconditions and postconditions.

The agent-oriented approach eliminates interfaces and provides agents with
capability descriptors that depict what an agent can do, i.e., the possible out-
comes of its actions, and how it can interact with other agents. The main dif-
ference between a capability descriptor and a postcondition is that the first can
express how the state of the environment changes after the complete execution
of an action. A postcondition can only assert how the state of the component
changed after the action has been executed, because the environment is not part
of the component’s metamodel.

Interaction with the Environment. As we have just mentioned, an envi-
ronment is a structural part of an agent’s metamodel, while it is not part of a
component’s metamodel. Agents execute in an environment that they can use
to acquire knowledge: agents are situated abstractions. Agents can measure the
environment and they can receive events from it. In both cases, agents react to
any change in the environment because of changes in their mental state. This
is radically different from the component-oriented approach where the envi-
ronment communicates with components only through reified events. Compo-

24 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

On the Use of Agents as Components of Software Systems 25

nents can react to an event only by constructing a relation with a reification of
the event itself.

The component-oriented approach seems to better respect encapsulation
than the agent-oriented approach: the state of the component is changed only
when the component itself decides to change it in reaction to an event. If we
consider this in more detail, we see that the agent-oriented approach also re-
spects encapsulation. Agents have reasoning capabilities that are ultimately
responsible for any change in their mental state. Any direct push of knowledge
from an agent’s sensors to its mental state is ruled through reasoning, and the
mental state remains encapsulated.

3. Semantically Reusing Agents and Components
Since the beginning of computer science, reusability has been considered

one of the main properties of a development technology. First procedures, and
later classes were a direct response to the need for creating reusable units of
software to, e.g.:

1

2

Speed-up the realization of new systems; and

Ensure the quality of systems that are realized though the composition
of a number of readymade units.

Component-oriented software engineering has already explored most of the
peculiarities related to building a system in terms of assembled components,
and it identified three concepts that any technology meant to improve reusabil-
ity should take into account: semantic interoperability (Heiler, 1995), semantic
composability (Pratt et al., 1999) and semantic extensibility (Fankhauser et al.,
1991). No formal definition for such concepts is available in the literature and
the general feeling is that formalizing such ideas would require concepts that
are not part of the components’ metamodel. On the contrary, we can give for-
mal definitions of such ideas by taking into account very basic elements of the
agents’ metamodel.

Semantic Interoperability. Previous research on software components has
explored the problem of semantic interoperability in many ways, and the agent
community has also begun investigating the subject. For example, the recent
work on the characterization of the capabilities of Web Services (McIlraith and
Martin, 2003) follows the lines of established results, e.g., (Jeng and Cheng,
1995). Strangely enough, there is no agreed upon definition for semantic in-
teroperability and some variants of this concept are available in the literature
with different names, even though this name has been in use for a while.

The idea of semantic interoperability comes from a reasonable extension
of syntactic interoperability of components, i.e., the sort of interoperability

www.manaraa.com

that CORBA and standards with similar aims (e.g., DCOM and Java RMI)
provide. CORBA allows components to exchange messages and provides an
agreed upon syntax for such messages. The semantics of the exchanged mes-
sages is implicit, i.e., the semantics of a call to a method of a CORBA interface
is implicitly defined as follows: the call to the method actually causes the ex-
ecution of the body of the method. Nothing is said on the concrete outcome
of the call, i.e., what would happen to the world outside of the component that
executed the body of the method after such an execution would be completed.
This outcome is considered application specific and relies completely on the
programmer, who is responsible for reading the documentation of the interface
for deciding when and how to call the method.

Syntactic interoperability inhibits automatic assembly of components, be-
cause a client has no means to reason about the effects of a call it might have
decided to perform on one of the methods of a service-provider component.
Semantic interoperability is about extending the interface of a component with
an explicit formalization of the outcome of a method call in order to allow a
client to decide autonomously when and how to invoke that method.

What we have just described can be applied to agents if we concur that
invoking a method on a component is somehow similar to asking an agent to
perform an action. Exploiting the characteristics of agents, we can formalize
semantic interoperability as follows:

Definition (Semantic Interoperability, Client Standpoint). Given two
agents C and they are said to be semantically interoperable
if and only if:

where delegate_to(C, S, g) is a sort of abstract action of C whose outcome is:

This definition states that if (at some point in time) an agent C wants to
achieve g, and it wants to delegate such a goal to S, then S will know of such a
desire. In this way we can easily capture the lack of information loss, which is
the core of semantic interoperability: if an agent has a goal, then it can transmit
that goal to a service-provider agent without any loss of precision. It does not
really matter how the goal is communicated, the only important result of the
communication is the delegation of the goal to the service provider.

This definition of semantic interoperability takes the client standpoint, be-
cause C is the originator of g and nothing is said about S wanting to provide
its services to a set of possible clients. A similar definition is trivially possi-
ble taking the server standpoint, but such a definition is basically equivalent to
the one we showed and its discussion would not add much to the aims of this
chapter.

26 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

A fairly interesting consequence comes from this definition of semantic in-
teroperability: if we consider a MAS where agents are only intended to in-
teroperate semantically, then a very basic ACL with the achieve performative
only is sufficient. This is not strange at all, because it easily generalizes the
available work on ACLs, as mentioned in the previous section.

The achievement of semantic interoperability is not only a way for improv-
ing reusability, it is also a possible way for promoting optimization. With ev-
eryday syntactic interoperability, agents achieve their goals by possibly asking
other agents to perform actions, i.e., exploiting task delegation towards other
agents in an attempt to achieve their goals. Semantic interoperability exploits
goal delegation and this may promote cross-optimization, as discussed briefly
in the previous section.

Semantic Composability. The assembly of agents to realize a MAS is not
only a matter of making agents communicate in the best way, but also allowing
them to find each other. Interoperability is necessary, but not sufficient, for
composability: semantic interoperability requires and we
need to elaborate on this to achieve full semantic composability.

Semantic composability has been studied for a long time in the literature
of component-oriented software engineering, starting from well-known results
on the composability of objects obtained by researchers who are now active
in the community of aspect-oriented programming (Aksit et al., 1993). The
basic idea behind semantic composability is that a component should be free to
compose the services provided by a set of service-provider components with no
constraints deriving from locating the right service providers or from possible
mismatches between the interfaces of such service providers. It requires that
the things being composed not only have compatible interfaces, but also make
consistent assumptions about the world. Semantic composability has already
been extended to agents (Sycara et al., 2002), and we can make it more formal
by exploiting the same technique that we used for semantic interoperability.
We can say that two agents are semantically composable if no constraint is
imposed on the way agents delegate goals and, more formally, we can define
semantic composability as follows:

Definition (Semantic Composability). Given a set of n agents
they are said to be semantically composable if and only if:

where are the goals that A can solve and delegate(C, g) is a sort of
abstract action of C whose outcome is:

This definition states that if an agent C has a goal and there is an agent S
available in the MAS capable of achieving such a goal, then C can delegate the

On the Use of Agents as Components of Software Systems 27

www.manaraa.com

28 Methodologies and Software Engineering for Agent Systems

goal to S with no loss of precision caused by communication. In this way we
can capture the lack of information loss that semantic interoperability entails,
without the need of requiring C to know S and to desire to delegate its goal to
that S. It does not really matter how or to whom the goal is communicated, the
ultimate result of the composition is that an agent of the MAS would achieve
the goal for C.

This definition does not require the client to know the service-provider agent
prior to the delegation, and it does not guarantee that the chosen provider would
be known after the delegation. This is compatible with the common approach
of explicitly choosing the service provider, because the two approaches are
both captured by the definition: the client can identify the service provider of
choice in its goal. For example, if an agent C wants S to achieve goal j for it,
then the goal that C is bringing about is actually

Semantic Extensibility. Taking the literature on component-oriented soft-
ware engineering into account, we see that reusability is pursued not only by
means of composing reusable components, but also by making such compo-
nents extensible (Booch, 1994). Extensibility provides mainly two possibilities
of reuse:

1

2

Implementation of new components as extensions of available compo-
nents; and

Substitution of an existing component with a different one with (possi-
bly) no changes in the rest of the system.

The first approach is traditionally considered the base of object-oriented pro-
gramming: it supports the creation of new classes of objects by means of in-
heritance and polymorphism. This is still a good way to bring about reusabil-
ity, but nowadays the second approach is preferred because it allows reusing
entire systems and not only single classes. This so-called framework-based
reusability relies on the possibility of substituting a component with another
component without the rest of the system (i.e., the framework) being aware of
such a substitution.

Object-oriented and component-oriented paradigms achieve such a frame-
work-based reusability by means of inheritance and polymorphism, because
they assume that if two components belong to the same class, i.e., they are
of the same type, then they are substitutable. This is obviously not enough
and some extensions to such an approach have been already proposed (Meyer,
1997). In particular, the main problem of approximating substitutability with
type equivalence is that two classes may provide the same methods, but the
semantics of such methods, i.e., what they do on the world outside of the com-
ponent, may be completely different. In other words, two classes may be struc-
turally identical, but semantically different (Fankhauser et al., 1991).

www.manaraa.com

The idea behind semantic extensibility is that we want to have the possibil-
ity of substituting a component with another component extending the features
provided by the first component, while preserving the semantics of the opera-
tions that clients were able to perform before the substitution.

Taking the agent-oriented mindset and exploiting the formalisms that we
have introduced previously in this section, we can formally define semantic
extensibility as follows:

Definition (Semantic Extensibility). Given two agents B and D, we can
say that D is a semantic extension of B if and only if:

This definition states that (at each point in time), what B can solve is also
solved by D, i.e., from the point of view of any possible client interested in the
services that B may provide, they are substitutable.

Semantic extensibility together with semantic composability maximizes the
reusability of agents, at least if we adopt the assumption of considering agents
as the atomic units of reuse. Agents are composed freely on the basis of their
goals and they can be substituted with other agents with extended capabilities
with a complete reuse of the MAS surrounding the substituted agents.

Approximating Semantic Reusability. The model of reusability that we
have just discussed is obviously idealistic, because it does not provide any op-
erational means for supporting composability and extensibility. Nevertheless,
if we make and public and explicit, then semantic composabil-
ity is just a matter of passing a goal from a client to a service provider and, in
the most general case, it is just a matter of communication. We could exploit
a matchmaker agent capable of connecting a client with a service provider, or
we might rely on the middleware infrastructure. In this last case, e.g., we could
exploit a tuple space forwarding goals from clients to service providers, or we
could rely on a direct message passing that the programmer coded explicitly in
the program of the client. Similarly, making public and explicit guar-
antees semantic extensibility, because a client can always check before
requesting a service from a service provider S.

Unfortunately, and cannot be computed in the most general
case and we can only rely on public and explicit approximations of them. Com-
ponents and agents provide different approximations and the advantages that
agents have over components in terms of reusability derive from these different
approximations.

The ParADE framework (Bergenti and Poggi, 2001) was designed to maxi-
mize the interoperability of agents and it approximates semantic reusability as
follows:

On the Use of Agents as Components of Software Systems 29

www.manaraa.com

30 Methodologies and Software Engineering for Agent Systems

1

2

3

the knowledge of an agent is approximated with what the
agent believes, i.e., what it has deduced by applying steady rules to its
measurements of the environment;

the goals of an agent are approximated with the intentions that
it calculates from its beliefs and from the rules that drive its planning
engine; and

the goals an agent can solve are approximated
with the post-conditions of its feasible actions. These postconditions
take into account the state of the agent and of the environment after the
complete execution of an action.

The components’ metamodel relies on even stronger assumptions:

1

2

3

the knowledge of the component is approximated with the
state of the component, i.e., the values of its attributes and its relation-
ships with other components;

the goals of a component are
approximated with a singleton set that contains the postcondition of the
method that the component is about to invoke; and

the goals a component can solve areapprox-
imated with the postconditions of its methods. Such postconditions are
defined on the state of the component after the complete execution of a
method and nothing is said about the state of the environment.

Roughly, agents approximate semantic reusability better than components, be-
cause the element of the architecture that is in charge of enabling the flow
of information between a client and a service provider, e.g., the matchmaker
agent, has more precise information to perform its job.

Agents approximate semantic extensibility better than components because
the capability descriptors that they use comprise conditions on the environment
surrounding the agents, while the postconditions of the methods of components
consider only the state of a service provider after the complete execution of a
method. Therefore, agents can give very precise information on the outcome
of an action for the purpose of guaranteeing semantic extensibility.

4. Discussion

Agents not only are suited for uncommon types of applications where the
advanced characteristics of agents, such as learning and autonomy, are re-
quired, but also represent a valid alternative to other solid technologies because
agents:

www.manaraa.com

On the Use of Agents as Components of Software Systems 31

1

2

Provide the developer with higher level abstractions than any other tech-
nology available today (Bergenti, 2003); and

Have concrete advantages over components in terms of reusability.

The first point, i.e., working with higher level abstractions, has well-known
advantages, but it also has a common drawback: slower speed of execution.
In order to fully exploit the possibilities of agents, we need to implement an
agent model with some reasoning capabilities and agents of this sort are likely
to be slow. Nowadays, this does not seem a blocking issue because speed
is not always the topmost priority, e.g., time-to-market and overall qualityare
often more important. As far as the second point, reusability, is concerned, the
improvement that agents obtain comes at a cost: slower speed again. The use
of goal delegation instead of task delegation requires, by definition, means-end
reasoning and we face the reasonable possibility of implementing slow agents.

Fortunately, in both cases the performances of agents degrade gracefully.
We can choose how much reasoning, i.e., how much loss of speed, we want for
each and every agent. In particular, we may use reasoning for agents that:

1

2

Are particularly complex and could benefit from higher level abstrac-
tions; and

We want to extend and compose freely in many different projects.

On the contrary, we can rely on reactive agents, or components, when we have
an urge for speed. This decision criterion seems sound, because the more com-
plex and value-added an agent is, the more we want to reuse it and compose it
with other agents. Moreover, reactive agents are perfectly equivalent to compo-
nents and we do not loose anything using the agent-oriented approach instead
of the component-oriented approach.

www.manaraa.com

Chapter 3

A SURVEY ON AGENT-ORIENTED ORIENTED
SOFTWARE ENGINEERING RESEARCH

Jorge J. Gómez-Sanz, Marie-Pierre Gervais and Gerhard Weiss

Abstract This chapter presents a selection of current research works on agent technology
which are focused on the development of MAS. The purpose of this chapter is
to guide developers through existing theories, methods, and software that can be
applied in each stage of a development. However, this guide is not exhaustive
due the amount of agent-related research works. Thus authors have added ref-
erences to consult other information sources and complement the information
given here. Readers are encouraged to consult these external references in order
to obtain a more accurate view of the field.

1. Introduction
This past decade, developing a MAS has evolved from an art to a structured

discipline. Existing results in MAS research enable a developer to construct
MAS easier than before. Among others, there are tools that can produce com-
plete MAS from a specification, libraries of components that deal with concrete
MAS issues (distributed planning, reasoning, learning), and theories that de-
scribe MAS behavior and properties. Knowing all of them requires a great
effort. Existing surveys facilitate this task, but it is hard to give an overall view
of what software, theories, and methodologies exist, and how they are applied
to MAS development.

To alleviate this problem, and make the information easier to apprehend, au-
thors of this chapter have structured existing references into sections that deal
with MAS development from an engineering point of view. Thus, there are sec-
tions that consider analysis, design, implementation, and testing. The purpose
is to make this chapter less a survey and more a manual for MAS develop-
ment. This way, developers with some background on conventional Software
Engineering (SE) will see how they would do with agents what they do using
other paradigms. Also, this approach benefits beginners and specialized re-

www.manaraa.com

34 Methodologies and Software Engineering for Agent Systems

searchers in this field by introducing a general picture of the development, not
just solutions to concrete problems.

The criteria to distribute agent research into these stages have been obtained
from the SE itself. In SE, each stage of a development process deals with con-
crete topic and pursues the production of certain documentation, specification
or software. Trying to adapt topics considered in MAS research and the topics
associated to each development stage, the authors of this chapter have prepared
a brief summary of what readers can find along the chapter:

Analysis. This section deals with research work in agents helping to
obtain a problem description. In traditional software engineering, this
relates to the expression of requirements. In the agent domain, there are
agent approaches that deal directly with these requirements, but there
are also other hybrid approaches that have been adapted to the agent
concepts. This section includes considerations about the role of agents
in analysis purposes, specification languages that use agent concepts,
and support tools for these languages.

Design. This section considers how to facilitate a design of a MAS using
agent concepts and technology. In software engineering, design covers
the study of how to realize analysis elements into another specification
– software architecture, components, expected behaviors – that can be
directly implemented. To translate analysis specifications, it is necessary
to know how to build agents from scratch and using agent development
environments.

Implementation. This section surveys different approaches to use agent
technology in realizing concrete agent oriented designs. It proposes sev-
eral agent oriented languages, software libraries, frameworks, and sup-
port tools.

Testing. This section is a review of testing methods based on agent con-
cepts enabling to check that a MAS satisfies initial requirements and that
it has been built with no errors.

It should be remarked that the results mentioned in these sections are fo-
cused in the AOSE domain. There is no intention to evaluate state of art of
SE. In principle, existing formalisms, techniques and methods (e.g., object-
oriented ones) can be applied to develop agent-oriented software. However, a
problem with these approaches is that they fail, or tend to fail to capture the
essence of agent orientation (Jennings, 2000). Consequently, approaches de-
voted to the agent orientation are needed and such approaches are surveyed
in this chapter. For the sake of accuracy, the chapter uses software engi-
neering terminology when possible. This terminology is found in (Pressman,
1982; Sommerville, 2001).

www.manaraa.com

The analysis bases on the obtention of requirements in order to derive a de-
scription of what has to be built. A requirement determines what a software
system should do and defines constraints on its operations and implementa-
tion. According to (Sommerville, 2001), there are several types of require-
ments. Among others, there are user requirements, system requirements, soft-
ware, functional, and non-functional requirements. The process for obtaining
requirements is not trivial. In fact, there is a discipline, named Requirements
Engineering (RE), with this purpose. RE will be reviewed later in this section.

Agent research centers in functional and non-functional requirement def-
inition. Functional requirements are statements of the services that the sys-
tem must provide, or descriptions of how some computations must be carried
out. Non-functional requirements are product requirements which constrain
the system being developed, process requirements which apply to the develop-
ment process and external requirements (Sommerville, 2001).

Despite the type of requirement, gathering them does not imply the choice
of an agent model, since most of existing approaches make general assump-
tions about agents. A model of agent determines what elements are required
to specify agents and establishes a predefined behavior. A comprehensive col-
lection of articles, and a survey of features of existent agent models, can be
found in (Huhns and Singh, 1998). Choosing an agent model at this point may
couple too early a development with different agent architectures. So it may
be better, unless it is a requirement, to leave this choice to the design stage.

Requirements themselves are understood in different ways by researchers in
agents. Existing results can be categorized in one of these:

Agent approaches oriented towards requirements representation. These
representations include the concept requirement as first class citizen.
These works are referred in the RE literature as well.

Agent approaches that represent the system to be built using formal
methods. These methods reuse formalisms tested in SE. They are di-
rected towards the obtention of a formal specification.

A Survey on Agent-Oriented Oriented Software Engineering Research 35

Each section contains recommendations of the authors of this survey about
specialized literature and software. Though authors of this chapter have tried
not to forget any relevant research, reading this chapter is not sufficient to
obtain an adequate knowledge of the area. So, it is strongly recommended to
read the papers referred in this work, as well as subscribing to organizations
like AgentLink or AgentCities in order to be up to date with new results from
research work.

2. Analysis

www.manaraa.com

This section studies the role of agents in RE. Applying agents in RE implies
what some authors name Agent Oriented Requirement Engineering (AORE).
These approaches are characterized by ascribing a more important role to the
agents. However, according to surveys like (van Lamsweerde, 2000), the goal
concept is more extended than agent concept to represent requirements. As this
may disorient non-experienced developers, it is suggested that they read (Yu
and Mylopoulos, 1998), which includes an extensive argumentation in favor of
using goal as a first class concept when determining requirements. To have a
pure, i.e., a non agent oriented view of requirements engineering, readers can
consult (Zave, 1997) or (Nuseibeh and Easterbrook, 2000). The main differ-
ence of these works with respect to (van Lamsweerde, 2000) is that the agent
concept is not so important. (Zave, 1997) categorizes requirements engineering
works taking into account the kinds of problems that are addressed, and types
of solutions to these problems. (Nuseibeh and Easterbrook, 2000) is a detailed
review of RE that introduces different stages identified in RE processes and
related works for each one.

Integrating agents and RE is not easy. For instance, (Yu, 1997b) indicates
that agent is a concept to be delineated with different requirements like being
distributed, being intelligent, or being autonomous. The problem is that the
agent concept also ties in with concrete implementations that already carry
their requirements. So, to make sense an agent-oriented approach in RE, it is
better to use initially more abstract concepts like role or actor and once what
is required from an agent is clear, assign roles to agents. Later on, agents will
be implemented so that initial requirements hold.

One of the main references in AORE is i* (Yu, 1997a). It is a framework
that uses actors, beliefs, commitments, and goals to model organizational en-
vironments and their information systems. There are examples of using i*
in (Yu et al., 2001), that indicates how to identify the importance of a piece
of information in a organization, and (Yu, 1999), that models a real furni-
ture company. More examples can be found in the home page of the author

36 Methodologies and Software Engineering for Agent Systems

Developers can decide at this moment what kind of analysis is more ade-
quate to their situation. To present research works in each category, the chapter
have been divided into three subsections.

2.1 Agent Approaches Specialized in Defining
Requirements

Agent approaches that represent the system to be built using diagrams.
A frequent solution in SE is the use of diagrams to represent different
aspects of a system. Agents have followed this line proposing different
types of diagrams and concepts to capture the internals and externals of
MAS. The specification obtained does not need to be formal.

www.manaraa.com

(see http://www.cs.toronto.edu/~eric). i* has been also the starting point
for other frameworks, concretely Non-Functional Requirements (NFR) (Chung
et al., 2000) and Goal-oriented Requirement Language (GRL) (Yu and Liu,
2002). There are examples and tutorials available for GRL at http://www.

cs.toronto.edu/km/GRL. i* has a support tool called Organization Modelling
Environment (OME) (Yu and Liu, 2003). This tool can be downloaded if pre-
viously a license agreement is sent to authors. OME also supports other no-
tations, concretely GRL and NFR. So the same tool gives support for slightly
different RE approaches.

Recently, i* has been adopted as the underlying framework for an AOSE
methodology named Tropos (Mylopoulos and Castro, 2000) (see chapter 5).
Tropos has added to i* a development process and automated translation meth-
ods from a i* specification to agents based on JACK agent platform (Busetta
et al., 1998).

Besides i*, there are also two other classic works like KAOS methodol-
ogy (Dardenne et al., 1993) and Albert (Dubois et al., 1994). KAOS also con-
siders agents, actions, entities consumed by actions, and other relationships
among entities. Agents are responsible for the execution of tasks in order to
satisfy a goal, i.e., a requirement. An example of how to apply KAOS is (van
Lamsweerde and Massonet, 1995), a paper that describes a distributed meeting
scheduler. Notation of KAOS appears in (Dardenne et al., 1993). KAOS has
also its support tool, which is named GRAIL (Darimont et al., 1997).

Albert is a pure specification language with more detailed semantics than
KAOS or i* semantics. In fact, it is less ambiguous than other approaches
reviewed here. So its presentation has been moved to the next section.

Previous approaches lack of elements to model requirements with respect
to agent interaction. In this sense, a recurrent solution is role modeling. It is
oriented towards functional requirements, expressed with tasks, services, and
roles integrated in workflows. Research from Kendall (Kendall, 1998) is a
classic in this line of research. There are studies in identifying roles (Kendall,
1998) inside a development process though most of the work is done at the
analysis level. This work has had a big influence on other works, such as
Zeus (Nwana et al., 1999) or MaSE (DeLoach, 2001) (see chapter 6). Kendall’s
ideas constitute the method applied in the initial steps of Zeus (Collis and
Ndumu, 1999) and MaSE (Wood and DeLoach, 2001) methodologies. For
a more object-oriented approach, readers can consult (Depke et al., 2001),
that considers functional requirements as UML use cases where roles partici-
pate in performing certain tasks. ODAC is also a methodology adapting stan-
dards from distributed object computing to agent and using UML (Gervais,
2003). More details on approaches using UML are given in the UML based
approaches section.

A Survey on Agent-Oriented Oriented Software Engineering Research 37

www.manaraa.com

Formal methods are mathematical modelling techniques applied to a soft-
ware engineering process in order to obtain a non-ambiguous correct specifi-
cation of the system to be built (Pressman, 1982). The expected output of a
formal method is a formal specification. This specification can be used with
different purposes, besides formal verification, as it is mentioned in the tests
section. As (Wooldridge, 1997) remarks, a formal specification can be com-
piled to executable code or interpreted directly, without user intervention.

There are several research works that show how to apply formal methods in
generating a specification of a MAS.

Abstract State Machines (Gurevich, 1984) are the formalism employed in
MAS-CommonKADS (Iglesias et al., 1998b) to represent behavior of the sys-
tem at a high level. Concretely, MAS-CommonKADS uses Specification and
Description Language (SDL) (ITU, 1999), a standard language used to de-
scribe systems in the telecommunications domain. However, the degree of
details in SDL is quite high. This formalism is complemented with Class Re-
sponsibility Collaborator (CRC) cards as a representation method to gather in-
formation about different aspects of the system, like tasks specification or the
purpose of a system service. CRC cards are templates with slots that develop-
ers must fill using a concrete language. Other works reuse state machines, like
agentTool (DeLoach, 2001) that uses them to represent the behavior of internal
components of agents and protocols as well. This solution shares with SDL a
common view of communication as interchanged messages among different
state machines. In this line of research, developers can consult (Rosenschein
and Kaelbling, 1995), that show how to translate first order logic formulae to
state machines using automated methods. Though it is not exactly the same,
Petri Nets have been used many times to express the behavior of a component.
As an example to its application to the MAS domain, readers can consult (Xu
et al., 2002) and (Demazeau, 1995). The first directly models the internal be-
havior of agents with this formalism. The second introduces Petri Nets as an
abstraction to implement agent synchronization.

Z (Spivey, 1992) is a mathematical formalism based on sets manipulation.
There have been experiments in adapting Z to the agent domain (d’Inverno
and Luck, 1996; d’Inverno et al., 2000). Benefits of using Z are mainly reusing
the big amount of software and tools available to this language, what includes
automated code generation and formal verification methods.

Logics appear frequently as formalism to represent agent behavior, perhaps
due to the the extensive use of logics in classic artificial intelligence. For a
review of logics in a MAS context, readers can consult (Singh, 1997). A
short introduction of modal logic to MAS appears in (van der Hoek, 2001)
and (Wooldridge and Jennings, 1995a). According to these reviews, modal

38 Methodologies and Software Engineering for Agent Systems

2.2 Analysis Applying Formal Methods

www.manaraa.com

logics are playing a main role in the agent research field. This is a novelty,
since AI centers on propositional logic to represent knowledge and reason-
ing (Genesereth and Nilsson, 1987) with few attention to modal logic. In the
agent domain, modal logic can handle formulas that do not satisfy extension-
ality. Extensionality says that, to determine the truth-value of a formula, only
the truth-value of its subformulas must be considered. Due this property, time
and desire cannot be modelled in classic logic, see (van der Hoek, 2001) for
further explanations. Main works in modal logics in this field are the formal-
ization of BDI (Bratman, 1987) model in (Rao and Georgeff, 1991) and in-
tentional logic from (Cohen and Levesque, 1990). The first one was extended
with architectures and methodologies (Kinny et al., 1996) and is referred in
most works in the field. The second remarks the role of intentions using in-
tentional logics. It centers on how beliefs, desires, intentions relate to agent
actions. As a detailed example of a framework with BDI formalization and
tool support, readers should review DESIRE (Brazier et al., 1994; Brazier et al.,
1997), framework for DEsign and Specification of Interacting REasoning com-
ponents. Another relevant work in temporal logics, which are modal logics, is
Concurrent-METATEM (Fisher, 1994), though it relates to agent implementa-
tion rather than specification. However, it is interesting to read (Fisher, 1995)
since it sketches how to apply this logics in a software process as a whole.
Though it does not focus in the whole process, Albert (Dubois et al., 1994) pro-
poses a variant of temporal logic with extensions to consider actions, agents,
and constraints of the behavior of the system. This language, mentioned in
the previous section, was designed to gather requirements that later could be
processed using formal tools, like theorem proving software. The Web site
of Albert is http://www.info.fundp.ac.be/aibert to know more details or
contact authors.

Gaia (see chapter 4) also applies logics to describe some aspects of the sys-
tem. Like MAS-CommonKADS, uses set of CRC-like cards whose slots are
filled with logic formulae. It is not completely formal because these logic for-
mulae, in the available examples, are not tied to any model or implementation,
so their interpretation depends on the developer. However, these can be con-
sidered as a good approach to integrate SE methods together with formal ones.

Situation calculus (McCarthy and Hayes, 1981) is another formalism ap-
plied to model MAS. Situation Calculus is a first-order language (with some
second-order features) for representing dynamic domains. In the agent domain,
a key work is ConGOLOG (De Giacomo et al., 2000), a concurrent language
to generate computational models that constraints task execution according to
their preconditions and side-effects. The computational model that it defines
executes tasks if and only if their execution will not take the system to insta-
bility. Though computationally it is an expensive problem, they have relaxed
ConGOLOG constrains so that costs are affordable.

A Survey on Agent-Oriented Oriented Software Engineering Research 39

www.manaraa.com

Some methodologies represent part of the analysis results using diagrams.
Diagram based representations may not be formal. Some approaches propose
diagrams that are interpreted by a developer, like UML. In those approaches,
different developers can derive different interpretations. However, there are
also diagrams that are not ambiguous at all, like Petri-Net graphic represen-
tations of a protocol or Entity-Relationship diagrams to represent databases
tables. This section reviews two kinds of diagram based approaches. The first
deals with UML applied to the agent domain. The second with meta-modelling
languages as specification language of the MAS at the analysis level.

UML-Based Approaches. One the most widespread approaches of this kind
is AUML (Bauer et al., 2001) (see chapter 12), a project aiming at bringing
agent concepts into UML (OMG, 2000c). As a suggestion, readers should
start by (Odell et al., 2000) since it is one of the first papers about AUML. One
of the relevant results of AUML is protocol diagrams notation, which is being
considered as a new notation for the standard UML to express concurrence
and decision. AUML Web site is http://www.auml.org. It contains working
documents and articles about applying AUML to model different aspects of
a MAS (Bauer et al., 2001; Odell et al., 2001). Unfortunately, there are no
support tools for AUML.

PASSI stands for A Process for Agents Societies Specification and Imple-
mentation (Burrafato and Cossentino, 2002) (see http://www.csai.unipa.

it/passi), and it is a recent work that reuses UML tools as front-end. It ap-
plies a UML representation of elements belonging to an architecture for a better
understanding and handling. Concretely, Rational Rose is supplemented with
a customized plugin that provides PASSI extra functionality. As an example of
PASSI modelling, readers can consult (Burrafato and Cossentino, 2002) that
shows modelling of a book store company. In this line of research, something
similar has been proposed in (Bergenti and Poggi, 2001). It is a framework and
a programming language that facilitates the definition of planning capabilities
of agents. This approach inputs an XMI (OMG, 2003a) description of UML
diagrams to generate code directly to a target agent platform. XMI is a model
driven XML Integration framework for defining, interchanging, manipulating
and integrating XML data and objects. As it is a standard (issued by OMG),
any UML compliant tool should be valid as front-end.

Though these research works are very complete, they do not address prop-
erly MAS definition using a development process. Actually, they propose a
too simple development process. Those readers interested in a more detailed
solution to perform analysis, may read ADELFE (Bernon et al., 2002) (see
chapter 8). It proposes a very detailed analysis method reusing UML notation

40 Methodologies and Software Engineering for Agent Systems

2.3 Analysis using Diagrams

www.manaraa.com

that can be adapted to several agent models. The point with this work is that
it offers a general view of what elements are implied in a MAS generation,
which is complementary of (Wooldridge, 1997).

Meta-Modeling as Specification Language. Meta-modelling is a technique
for model description. Meta-modelling consists in describing types of objects,
their properties, relationships and how they appear together in a model. This
description is called a meta-model. A model is the instance of a meta-model
and it conforms to a set of constraints defined in the meta-model, like among
objects of type A and B there can be only relationships one to one of type C.
Readers interested in knowing more about meta-model ling can consult (OMG,
2000b; OMG, 2000c), where a meta-modelling language is presented and ap-
plied to describe application data, program interfaces, or diagrams.

Why using meta-models in the agent domain? Citing (Gomez-Sanz et al.,
2002), meta-models are useful as a kind of templates for generating agent mod-
els. They describe what any MAS should have. With meta-models of a MAS,
the mission of the engineer turns into instantiating these meta-models in order
to define the entities that may appear in a concrete MAS.

Meta-models have been used to specify AORE notation, like in (Dardenne
et al., 1993), where KAOS elements were specified using a meta-model. An-
other referred work in the MAS domain is the AAlaading framework or AGR
(Agent-Group-Role) (Ferber and Gutknecht, 1998). In that paper, authors
show how to model organizations of agents using meta-models. That research
has evolved into the MADKIT platform (see http://www.madkit.org). Ex-
amples of how this meta-model integrates with MADKIT are available in the
literature, e.g., (Gutknecht and Ferber, 2001). MESSAGE (Caire et al., 2001b)
(see chapter 9) proposes a meta-model for MAS that bases on engineering
practices. As it is presented in detail in this book, it will be enough to say that
its meta-model can be accessed at http://www.eurescom.de, where there are
also prototypes and examples of specifications. Following the steps of MES-
SAGE, readers may also consult INGENIAS (Gomez-Sanz and Pavon, 2003).
INGENIAS official Web site is http://ingenias.sourceforge.net. It also
provides examples and Java-based development tools. Finally, meta-modelling
is applied too in (Knublauch and Rose, 2002). (Knublauch and Rose, 2002)
presents a visual modelling tool, AGILShell, and a notation to specify MAS.
According to authors, this notation is specially suited for the design of agents
that support the information flow between humans in existing work groups.

A Survey on Agent-Oriented Oriented Software Engineering Research 41

3. Design

According to conventions in software engineering (Pressman, 1982), anal-
ysis refers to what has to be done, whereas design determines how it could
be done. Design also supplements analysis with information that deals with

www.manaraa.com

implementation choice. So design aims at producing concrete instructions that
allow programmers or tools to generate a system that satisfies analysis require-
ments.

Having selected a concrete analysis method influences the kind of design to
be performed. Clearly, some of the works introduced in the previous section
already include design concerns. So it would seem natural to continue the de-
sign using the same method. However, analysis does not compromise that all.
Certainly, an experienced developer can choose any of the previous analysis
approaches and still have freedom to selected another different kind of design.
The link between design and implementation is harder to broke.

This section introduces two main tendencies in an agent oriented design.
Some works suggest that the design activity mainly consists in a refinement of
diagrams (Collis and Ndumu, 1999; DeLoach, 2001). These works relay on a
specific development environment that translates diagrams to code. A develop-
ment environment is a tool or set of tools capable of performing tasks required
by a developer in order to build a software system. Usually, a development
environment also defines a set of components, or a framework, to be used in
the final system. This reduces the set of decisions to be taken during design.
At the same time, it also makes the design less flexible, because there are parts
that cannot be changed easily. Another trend is not to obviate these decisions
and face the whole development from scratch, selecting adequate frameworks
and libraries. (Bernon et al., 2002; Kinny et al., 1996) belong to this kind of
works. Indeed, this is more flexible, but also harder to realize since it requires
quite more experience than the other alternative.

42 Methodologies and Software Engineering for Agent Systems

3.1 Design with an Development Environment
Development environments for MAS building are oriented towards rapid

prototyping. First development environments for MAS generation combined
a graphical front-end and a MAS framework. The purpose of this front-end
was to facilitate the MAS framework configuration. The resulting prototype
was an instantiation of this framework. These environments for MAS gen-
eration were Zeus (Nwana et al., 1999) and AgentBuilder (see http://www.

agentbuilder.com). Zeus includes ontologies, communication, and planning.
It is a really good tool if a developer wants to create MAS quickly and ex-
periment with their features. AgentBuilder is supposed to be the evolution
of the agent programming language Agent0 (Shoham, 1993). Semantics of
the models bases on the original Agent0 programming language. As Zeus, it
includes a visual editor, simulator, and debugger. Unlike Zeus, it gives de-
velopers more control of the development environment, enabling developers
to add new customized modules, called Project Accesory Classes (PACs), for
connecting AgentBuilder agents with legacy applications.

www.manaraa.com

These environments are adequate for rapid prototyping. Nevertheless, there
are two risks on using them. First, this kind of tools may accelerate the devel-
opment, but there is no guarantee that the resulting prototype will satisfy ini-
tial requirements. The problem may not appear at the beginning, but later on,
when development needs become more strict. Besides, underlying frameworks
of these tools cannot be modified easily. Usually, their code is not documented,
so changing one component is risky. It may cause a general crash of the whole
application. Second, developers depend on the authors of the tools to have up-
dated versions with less bugs or improved functionality. By applying the tool
to different domains, bugs are likely to appear. Testing of these tools cannot
be exhaustive enough to ensure bug-free applications, specially when they are
not commercial. Therefore, having regular updates of these environments is
fundamental. The conclusions is that a rapid prototyping tool may not be the
solution to all kinds of developments, specially if there is few budget available
to buy good commercial tools, such as AgentBuilder.

Then, should rapid prototyping be discarded? The answer is no. There
are other tools that propose a different way of generating prototypes. The
proposal is to decouple the development environment and the predefined pro-
totype. These tools support analysis and design and can produce code into
any language. This is the case of agentTool (see http://www.cis.ksu.edu/
~sdeloach, and chapter 6), PASSI (Burrafato and Cossentino. 2002) and IN-
GENIAS IDE (see http://ingenias.sourceforge.net).

The two first act as translators of the specification language they use to a
concrete implementation language. In the design, agentTool uses state ma-
chines notation, UML sequence diagrams and some variants of class diagrams
to represent internal components of agents and the agents themselves. As a
meaningful feature of agentTool, it uses a protocol verification tool, named
SPIN (Holzmann, 1991), that prevents deadlocks. INGENIAS IDE, in the line
of MESSAGE, uses a language built of common elements in MAS specifica-
tions (agents, tasks, resources, organizations, etc.) and a hierarchy of relation-
ships that may appear among them. The result is different from UML, though
it is constructed in a similar way. In a INGENIAS design, a developer centers
on taking analysis elements and enhances the specification with more details
and diagrams that illustrate how it could be done. Like UML, INGENIAS IDE
uses incremental development techniques.

The two last, PASSI and (Bergenti and Poggi, 2001), propose reusing ex-
isting UML design tools and complementing them with agent code genera-
tion facilities. These tools also decouple the graphical front-end from facili-
ties to translate a graphical notation to pieces of low level code. Later, these
pieces are put together with other existing pieces of low level code. In the case
of (Bergenti and Poggi, 2001) documentation is available. However, PASSI
does not provide enough information about its approach. In both cases, de-

A Survey on Agent-Oriented Oriented Software Engineering Research 43

www.manaraa.com

Not using a development environment means that developers have to work
more choosing proper theories, methods, and software. To help developers in
selecting and applying them into their systems, it would be a good idea to re-
view works that have made this effort, already. For instance, (Massonet et al.,
2002) considers how to translate MESSAGE/UML diagrams to a concrete tar-
get agent platform, JADE (see chapter 13), where control of agents are expert
system shells. For more detailed examples, readers may consult (Bernon et al.,
2002; Caire et al., 2001b; Kinny et al., 1996) which correspond to different ap-
proaches to this problem: object-oriented, agent-oriented, and formal methods
based. These are works that provide examples of use and that integrate results
in existing research in agents. There are others that deserve being mentioned,
but the lack of space prevents a serious review. Readers are invited to review
chapters in this book to find additional information.

Reading these works, developers will find out that there are too many con-
cerns to take into account. Among others, authors of this chapter highlight the
selection of an agent model, agent architectures for models of agent, code dis-
tribution issues, agent features design, agent platforms, and MAS frameworks.

Though relevant, the problem of selecting an agent model is not addressed
here. As it was said in the analysis section, interested readers are invited to con-
sult (Huhns and Singh, 1998) to get a general picture of what features provide
different representations. To complement this view, (Nwana, 1996) contains a
huge collection of references to developments of agents in many domains. De-

44 Methodologies and Software Engineering for Agent Systems

velopers perform design using UML notation in a UML compliant tool. This
notation is marked up with stereotypes, the UML extension mechanism to type
classes, so that developers can relate to a class titled Agent with a piece of soft-
ware that will be generated later. The approach seems promising since it is a
quick method for integrating agent techniques with UML, apart of AUML.

Though it is not a development environment, DESIRE (Brazier et al., 1997)
deserves a few lines. Probably, it is one of the most mature works in this
field, due to the number of related papers and training courses (see http:
//www.iids.org). DESIRE proposes a method to build agents based on the
recursive composition of interconnected tasks. DESIRE is supported by a the-
ory on the operation of the framework, a method of development, and tools to
facilitate a development with this framework (Brazier et al., 2002). There are
examples of the application of DESIRE to different domains, like a scheduler
for appointments in a call center (Brazier et al., 1999) or the diagnosis of fail-
ures in a fridge (Brazier et al., 2002). Both papers show in detail how a design
takes place in this approach.

3.2 Design without a Development Environment

www.manaraa.com

velopers can obtain examples of to know how to develop agents for different
purposes.

To introduce other aspects, this paper provides three sections. The first deals
with agent architectures. The second with issues related with the distribution
of agents, MAS or internal components among different nodes in a network.
The third presents research works that addresses theory and implementation
of different agent features. The last one collects recommendations of agent
platforms and frameworks for MAS design.

Agent Architectures. Why an agent architecture? Because an architec-
ture shows how to put together different pieces of software and make them
interact. Here, an agent architecture would provide a framework for realiz-
ing different features that researchers require from agents. In this domain,
agent architectures have been defined in many ways. Specially, when research
on agent started, agent architectures, like IRMA (Bratman et al., 1988), were
defined using flows of data among interconnected boxes whose functionality
was explained in natural language. There are logical definitions of agents,
like those expressed as tuples of functions, as in (Wooldridge, 1992). Each
function defines a particular aspect of the agent, like belief revision functions
that determine in each state what beliefs are correct. Layered definitions are
also frequent, like (Kendall and Malkoun, 1996). In a layer definition, sensory
inputs come through lower layers and induce reactions which propagate up-
wards. When an upper layer wants to perform an action in the environment,
the process is the opposite: downwards propagation. Each layer inputs the
output of lower layers, and viceversa. Finally, there are also definitions biased
by object-oriented approaches that define systems, subsystems, their interfaces
and how they are interconnected, like agents described in (Garijo et al., 1998).
This kind of definition is very useful towards implementation, since it already
identifies the interfaces of components, the number of existing components,
and their purpose. In this direction, software engineers also use Architecture
Definition Languages (ADL). Reviews on ADL can be found in (Clements,
1996) and (Medvidovic and Taylor, 1997). An ADL expresses at a high level
what subsystems exist and how they connect. Let us notice that UML v. 2.0
is being considered as a kind of ADL. This would be very interesting, since it
would facilitate the integration of an architectural view in the agent approaches
close to UML.

In an effort of classifying existing agent architectures, (Wooldridge and Jen-
nings, 1995b) suggested three paradigms: deliberative architectures, reactive
architectures, and hybrid architectures. Deliberative stands for thinking before
doing. These architectures usually have a symbolic representation of knowl-
edge and provide mechanisms to decide actions upon it. Though flexible, these
architectures have an important drawback: reasoning mechanism consume too

A Survey on Agent-Oriented Oriented Software Engineering Research 45

www.manaraa.com

much time. Perhaps when the agent decides what to do, it may be too late.
Reactive means that there is no reasoning on deciding what to do next, just
associations of inputs and outputs, like should happen A, then do B. These ar-
chitectures decide what to do next very fast, but chosen action may not be the
best one. Finally, hybrid architectures are architectures that share deliberative
and reactive features. (Wooldridge and Jennings, 1995b) contains representa-
tive examples of architectures of each kind that need not to be mentioned again.
Just to add a couple of references, this section mentions some recommendable
examples of deliberative, SOAR (see http://www.eecs.umich.edu/~soar/

docs.html) and Cougaar (see http://www.cougaar.org), and a hybrid archi-
tecture, INTERRAP (Muller, 1996).

SOAR derived from the original work of A. Newell (Laird et al., 1987) is
an important deliberative architecture. There have been applications of SOAR
ranging from modelling human behavior in urban combat till players in first-
person-shoot-em-up games. Cougaar, according to their experiments, is may
be the most suitable agent architecture available nowadays. There are develop-
ment manuals and examples of developments available at its Web site.

INTERRAP (Muller, 1996) shows in detail how this kind of agent is built
and used to solve concrete problems. Rather than software, INTERRAP pro-
vides the experience of the developer in how a determined organization of
components may increase software reuse from one domain problem to another.

The list of agent architectures may continue for pages and pages. Of course,
it is recommendable knowing at least representative examples. To save some
extra reading, (Muller, 2003) gives rules of thumb to help selecting a suitable
agent architectures. These rules are obtained after a study of several application
domains and their key features.

Distribution of Components. Distribution of agents across a network,
parts of a MAS, or just internal components of an agent is a decision that may
take place at this stage. As an example of how to deal with distribution of
agents, readers can consult (Gervais and Muscutariu, 2001). As an alternative
to distribution, agents can use mobility and forget about where they are. How-
ever, an agent can move from one node to a destination node in a network if
and only if there is an agent platform, or similar, installed in the destination
node. So, who decides which nodes implement what agent platform so that it
all works? Deployment is an important part of a specification. The problem is
not new at all. In fact, there is notation in UML to deal with this problem and
show how the final system should be deployed.

In any case, distribution of agents among different machines, physical or
virtual, implies taking into account the issues about how communication may
take place, what is being communicated, and how this communication can be
used to organize a system behavior.

46 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

Communication technologies. Representative technologies that facilitate
communication between components are: shared spaces of tuples, Re-
mote Procedure Call (RPC), and message passing. The first is a reposi-
tory of information where several processes are connected and read/write
information. An extended, and free, implementation of this technology
is Java Network Interfaces (JNI) from Java. The second is based on the
existence of a midleware acting as intermediary among two processes.
In this variant, a process implements an API, which is offered remotely
to other processes in any machine through this middleware. The main
reference in this technology is CORBA (OMG, 2000a), a standard ported
to most programming languages and Operative Systems. CORBA pro-
vides many more things than RPC, but this is not the place for such a
discussion. Another middleware offering similar features as CORBA is
.NET (see http://www.microsoft.com) which is recently born, com-
pared to CORBA, and based on Microsoft platforms. Also, the famous
Remote Method Invocation (RMI) available in Java, that supports seri-
alization and transmission of objects through the network. Finally, mes-
sage passing, though not new at all, perhaps the most frequently used
in agent research. It may relay on any of the previous communications
technologies since what it defines is asynchronous high level communi-
cation among two processes. Messages themselves are described with
Agent Communication Languages (ACL).

Agent Communication Languages. An ACL describes the format and
semantics of messages interchanged among two or more agents. Inter-
preting properly an ACL requires more than simply parsing the mes-
sage and extracting data, as remarks (Genesereth and Ketchpel, 1997),
since messages have an implicit semantics that detail what kind of re-
action is expected in the receiver. There are nowadays two main ACL:
KQML (Labrou and Finin, 1997) http://www.cs.umbc.edu/kqml and
FIPA-ACL http://www.fipa.org. The first established the bases of
current FIPA-ACL, identifying a set of speech acts to be used in agent
communication. However, current research focuses in FIPA-ACL, that
synthesizes the best of KQML together with other aspects of agent com-
munication, such as standard protocol definition, content languages, and
ontologies. Readers interested in the semantics of FIPA-ACL are invited
to review its specification, where semantics are expressed using modal
logics. Both KQML and FIPA-ACL have several implementations ac-
cesible from http://www.cs.umbc.edu/kqml and http://www.fipa.
org/resources/livesystems.html.

Ontologies. An ontology determines allowed terms in the content of
a message, as well as concrete semantics and relationships with other

A Survey on Agent-Oriented Oriented Software Engineering Research 47

www.manaraa.com

48 Methodologies and Software Engineering for Agent Systems

elements of the ontology. Specialized languages to define ontologies are
Resource Description Framework RDF (see http://www.w3.org/RDF),
a classic one, and DAML (see http://www.daml.org/language), the
unofficial successor of RDF nowadays. To handle ontologies, there are
tools such as those available at (see http://www.daml.org/language)
and Protégé (see http://protege.stanford.edu). The Web site of
Protégé contains libraries of ontologíes as well as tutorials, papers, and
examples. Also, there are extensions to the JADE agent platform to use
ontologies created with Protégé.

Coordination. Coordination languages provide description of how inter-
action should perform over the time. The importance of coordination in
MAS does not need justification (see chapter 14). According to (Gel-
ernter and Carriero, 1992), a system can be built out of a computational
model and a coordination model. The first deals with sequences of in-
structions to be executed without interruption. The second attends to
how these pieces appear together so that the system satisfies its initial
requirements. To achieve such decoupling of aspects, computation vs.
coordination, and their later integration, coordination languages propose
both a language to express the coordination and frameworks to support
these languages. For a general discussion about relationships between
computation and coordination, pros and cons of different integration so-
lutions, readers can consult (Gelernter and Carriero, 1992). In this do-
main, a main reference is the Linda language (Carriero and Gelernter,
1989). It defines how coordination can be defined when the communi-
cation is performed over a shared tuple space. For a complete review of
relevant coordination languages, it is recommended to read (Papadopou-
los and Arbab, 1998). But, how does a developer apply these languages
in a MAS? What is different between conventional coordination lan-
guages and MAS is the computational model used by agents, which, in
general, is more complex. To help in the adaptation of these concepts,
readers are invited to consult chapter 14.

For instance, JADE uses, by default, RMI as internal communication fa-
cilities, defines wrappers for FIPA-protocols and other facilities to decouple
computation from interaction, and includes components to define ontologies.
In this sense, JADE is very complete. However, a designer must know that it
is possible to generate other kinds of agent-based systems by reusing existing
technology.

Agent Features. Researchers associate agents with certain features like
autonomy, social ability, or intelligence. This section gathers references to
research work in designing these features. Why considering these elements

www.manaraa.com

A Survey on Agent-Oriented Oriented Software Engineering Research 49

in the design section? Because agent abilities are related with agent models
and, as it was mentioned before, agent model selection had been postponed to
design.

Autonomy, as intelligence, is a term that it is hard to define since it involves
philosophical considerations. According to dictionaries, it can be understood
as freedom of will. However, (Hexmoor et al., 2003), a kind of survey on
autonomy, shows that there are many forms of autonomy and different ways of
understanding it. Among others, it refers to adjustable autonomy, the user of
an agent decides whether it is autonomous or not, and behavioral autonomy as
the agent’s capacity to be original and not guided by outside source. But, how
to achieve or describe autonomy?

(Hexmoor, 2001) defines a predicate calculus account of autonomy us-
ing a BDI model. This representation clarifies the notion of autonomy
through the concept situated autonomy:

Situated autonomy is an agent’s stance, as well as the cognitive function
of forming the stance, toward assignment of the performer of a goal at a
particular moment when facing a particular situation.

(Luck and d’Inverno, 1995) describes autonomy using Z (Spivey, 1992)
notation. This description assumes that autonomy arises when an agent
has a set of motivations. Here a motivation is:

... any desire or preference that can lead to the generation and adoption of
goals and which affects the outcome of the reasoning or behavioral task
intended to satisfy these goals.

(Castelfranchi and Falcone, 1998) proposes to view autonomy through a
theory of delegation. In this paper, an agent is autonomous with respect
a task delegated by other agent. Say an agent A has to execute a task
demanded by an agent B. Factors to be considered in order to qualify
the degree of autonomy of A with respect B according to this delegated
task are: how unspecified the task to execute is, who is responsible of
checking the state of the task, and what decisions have been delegated.

(Weiss et al., 2003) introduces a formalism called Role-Norms-Sanctions
(RNS) for explicit specifying the autonomy of computational agents.
The idea behind RNS is to support developers of agent-oriented systems
in precisely stating what an agent as an autonomous entity is allowed,
obliged and forbidden to do. RNS is supported with a tool called XRNS,
so developers can generate rather easily their definitions.

Artificial Intelligence and Distributed Artificial Intelligence are the main
disciplines in studying computational aspects of intelligence. (Russell and
Norvig, 1995) is a rather complete review of modern AI research in this topic.
It focus on AI applied to the construction of intelligent agents. With respect

www.manaraa.com

50 Methodologies and Software Engineering for Agent Systems

DAI, (Ferber, 1999) makes an account of relevant research of DAI in the con-
text of MAS. Also, (Weiss, 1999) contains a broad review of research in DAI
and MAS considering key topics such as distributed problem solving, reason-
ing, or MAS learning.

As a guideline for reviewing computational intelligence, a broad field, this
section follows list of relevant topics in intelligent agents according to (Russell
and Norvig, 1995). These are planning, Problem Solving Methods, Learning
and Reasoning. For a deeper understanding of the reviewed topics, (Ferber,
1999; Rich and Knight, 1990; Russell and Norvig, 1995; Weiss, 1999) should
be consulted. Developers looking for software for any of these topics, can go
to http://www.cs.cmu.edu and download it. This address also contains links
to relevant material in AI.

Planning. Incorporating planning capabilities means that an agent will
know, without human intervention, how to combine different tasks in or-
der to get a concrete result. There is a lot of research in planning in AI.
STRIPS (Fikes and Nilsson, 1971) is one of the seminal works in the
area. It provides a planning algorithm and a language to describe tasks.
In the agent domain, TAEMS (Decker, 1996b) and Generalized Partial
Global Planning (GPGP) algorithm (Decker, 1995) must be mentioned.
The first provides concepts and notation for the second, which is a dis-
tributed planning solution for tasks that assumes that participants in a
plan may have only partial information about it. For both works, there
are software and examples available at http://dis.cs.umass.edu. A
more comprehensive list of planning systems and architectures can be
found in (Amant, 2003).

Problem Solving Methods (PSM). A PSM describes the reasoning of
knowledge-based systems as patterns of behavior that can be reused
across applications (Fensel and Motta, 2001). Using PSM can make a
program autonomous since it provides reusable behaviors to solve con-
crete problems. There are libraries of PSM and methodologies that in-
tegrate them into a development lifecycle. For a general overview of
what a PSM is, from a Knowledge Engineering point of view, and what
kinds are available, readers can consult (Fensel and Motta, 2001). For
an adaptation of PSM to the agent domain, readers should consult MAS-
CommonKADS (Iglesias et al., 1998a), specially the section dedicated
to task model and knowledge modelling which addresses PSM integra-
tion. For an extended version, readers can consult original work in (Igle-
sias, 1998). Finally, extended surveys on distributed PSM can be found
in (Decker et al., 1989; Durfee et al., 1989).

Learning. Learning is a key element if the developer wants the agents
to improve over the time. There are many kinds of learning techniques.

www.manaraa.com

A Survey on Agent-Oriented Oriented Software Engineering Research 51

Apart from AI literature‚ readers can consult the machine learning re-
view (Dietterich‚ 1998). That paper contains pseudo-code examples for
different kinds of algorithms and studies of their performance and re-
sults. In the agent domain‚ readers can find the chapter (Sen and Weiss‚
1999)‚ that contains learning techniques applied to MAS‚ and (Stone and
Veloso‚ 2000)‚ that offers a collection of different MAS scenarios and a
collection of useful learning techniques to apply in each of them.

Reasoning. In developing reasoning mechanisms‚ logics have proven to
be a valuable tool. Nevertheless‚ reasoning capabilities depend strongly
on the kind of knowledge representation. For instance‚ with a first-order
logic representation‚ there exists algorithms allow to draw conclusions
or courses of action. It is not exactly planning‚ since it deals more with
theorem proving techniques and logic inference (backward or forward
chaining). To know more about trends in reasoning using logics‚ read-
ers can consult (Halpern et al.‚ 1995). For a comprehensive review of
knowledge modelling techniques‚ readers can consult (Devedzic‚ 1999).
That paper collects examples for each kind of representation as well as
references to tools that help in modelling and reusing knowledge.

An agent being social‚ according to (Wooldridge and Jennings‚ 1995a)‚
meant that an agent had to interact with other agents using an Agent Commu-
nication Language (Genesereth and Ketchpel‚ 1997). Results referred here are
closer to (Huhns and Stephens‚ 1999) point of view. In (Huhns and Stephens‚
1999)‚ being social implies characterizing agents with abstractions from soci-
ology and organizational theory. In principle‚ this kind of view would facili-
tate developing MAS using peer-to-peer interaction instead of a server-client
paradigm. This section will comment results in two research lines on social
aspects: how to make an agent conscious of its relationships with other agents
and how to build a society of agents. The first line refers to representation of so-
cial dependencies and reasoning upon this information. The second line distin-
guishes between agent being organized and agents organizing by themselves‚
also known as self-organizing (see chapter 17). For an alternative point of view
about these aspects‚ readers are invited to consult (Boissier‚ 2003). (Boissier‚
2003) presents organizations in detail from an observer point of view‚ from the
designer point of view‚ and from the perspective of an agent.

(Sichman et al.‚ 1994) introduces the study of social dependencies. This
paper indicates‚ starting from an external description of an agent‚ how to de-
rive dependencies upon other agents and establishes the foundations of the
so-called social reasoning. This kind of reasoning is presented in more detail
in (Sichman and Demazeau‚ 2001) as:

… a mechanism that uses information about the others in order to infer some
new beliefs from the current ones.

www.manaraa.com

52 Methodologies and Software Engineering for Agent Systems

This research links with other aspects already reviewed in this paper‚ such
as autonomy or coordination. According to authors‚ these results had been
implemented in two systems: DEPINT (Sichman‚ 1998)‚ a simulator of micro-
societies‚ and DEPNET (Conte and Sichman‚ 1995)‚ an open MAS.

In the agents being organized trend‚ the first recommended paper is (Ferber
and Gutknecht‚ 1998). In this trend there is an organization that can be distin-
guished as an first class citizen or just appear in form of roles and social de-
pendencies. (Ferber and Gutknecht‚ 1998) presented a meta-model for organi-
zation description where organization appeared as first class citizen. This work
evolved into the MADKIT platform‚ that will be reviewed later. A similar orga-
nization description appears in MESSAGE/UML (Caire et al.‚ 2001b)‚ where
organizational entities relate with interaction related or task related entities.
Gaia (see chapter 4) describe its organization with three main organizational
abstractions: organizational rules to constraint system behavior‚ organization
structures by defining roles‚ and organizational relationships that determine
agent to agent dependence. This notion of the organization is partially shared
by enterprise modelling (Fox and Gruninger‚ 1998). This discipline studies
how to create computational representations of businesses‚ governments‚ or
any other organizational structure. In this discipline‚ readers can find ontolo-
gies to describe MAS organizations as well as tools to simulate organizations
or formats to interchange organizational processes definitions. The application
of agents in enterprise modelling to simulate or implement business process
workflows have appeared with relative frequency in the agent literature. (Stohr
and Zhao‚ 2001) introduces basic workflow terminology‚ concepts‚ and related
architectures. It is a good first step towards understanding what is the role of
agents in workflows. Examples of application of agents to workflow automa-
tion are (Walshe et al.‚ 2000)‚ that shows how to define a workflow using XML
and reactive/cognitive agents‚ and (Judge et al.‚ 1998)‚ that shows how agents
can enhance a workflow basic functionality.

In the agents organize by themselves trend‚ the main concept we have to deal
with is self-organization. Self-Organization approaches assume that agents get
organized without human intervention. This idea is the opposite of the previ-
ous one‚ where organization exists by itself‚ whereas here it is just a bottom-up
construct. This had been discussed deeply in philosophy in relation with the
concept of autopoiesis and biological systems‚ readers can check (Whitaker‚
2003) (see http://www.calresco.org/sos) for an introduction and related
software. Here‚ researchers look for emergent behaviors‚ or how to obtain cer-
tain patterns of global behavior in a MAS by changing the way some agents
interact. As an example‚ readers can review (Roli‚ 2002)‚ a work based in cel-
lular automata. A cellular automata are cells in a grid that can only switch on or
switch off autonomously depending on the state of their neighbors. More ex-
amples of self-organization and emergent behaviors can be found in literature

www.manaraa.com

A Survey on Agent-Oriented Oriented Software Engineering Research 53

about MultiAgent-Based Simulation (MABS) like (Conte et al.‚ 1998; Moss‚
2000)‚ both gather research trends in MABS. There are some attempts of struc-
turing these self-organization results into bodies of knowledge. One of them
is ADELFE (Bernon et al.‚ 2002)‚ a methodology supported by the ADELFE
toolkit. This methodology‚ with a dedicated chapter in this book‚ integrates
Adaptative Multiagent Systems (AMAS) considerations in the development
process so that developers can have some control over this kind of systems.
Also‚ there is Engineering Self-Organizing Applications (see http://gaper.

swi.psy.uva.nl/esoa/content/main.php) working group. This group‚ as
its name remarks‚ researches self-organization applied to agents. At their Web
site‚ researchers will find references to work on this kind of systems and an
interesting survey of their current results.

A work in the middle of the previous trends is (Esteva et al.‚ 2002). This
work provides methods to obtain emergent behaviors that satisfy the needs
foreseen by developers at design time. Readers interested in this work can
refer to chapter 10 dedicated to Social Agents Design Driven by Equations
(SADDE) methodology.

Besides organizational approaches‚ there are other alternatives to manage
the behavior of a MAS‚ like policies. In networks and telecommunication do-
main‚ the concept of policy is widespread. A policy describes a constraint in
the behavior of the system. This concept of policy would be similar to the
social laws (Shoham and Tennenholtz‚ 1995). The main difference is that a
policy can be changed in runtime. The application of policy to agents has been
studied in (Dulay et al.‚ 2001). This paper shows a language to define policies
and a framework based on agents to support them. The work is interesting be-
cause it shows researchers how to build a system that support behavior changes
in runtime.

Agent Platforms and Frameworks. Citing (Pree‚ 1995)‚ frameworks
represent application skeletons for a particular domain. The utility of a frame-
work‚ then‚ it is to save the effort in developing by reusing architectures‚ com-
ponents or libraries. An agent platform can be understood as a set of ser-
vices that allow agent management and communication. An agent platform
may come with shells of agents that developers can reuse for their systems.
There are so many that reviewing all existing MAS frameworks in this chap-
ter is not possible. Thus only some of them will be mentioned here. For a
broader view‚ readers are invited to go through other surveys like the list of
agent software from http://www.agentbuilder.com or software reports and
technology roadmaps available at AgentLink (http://www.agentlink.org).
As developers‚ adopting tools that follow standards is a wise option. However‚
in the agent domain‚ standards do not provide answers to some problems‚ like

www.manaraa.com

54 Methodologies and Software Engineering for Agent Systems

what the internal structure of agents is or its control. That is the reason to
consider not only standards‚ but also other proposals:

Standard. There are two standards MASIF and FIPA. MASIF stands for
Mobile Agent System Interoperability Facility (MASIF) (OMG‚ 1999)
standard. It is based on pure CORBA to implement communication
among agents and mobility. The official platform for MASIF is Grass-
hopper (see http://www.grasshopper.de/index.html). FIPA Stands
for Foundations for Intelligent Physical Agents. It proposes a number of
services similar to CORBA‚ but centered on defining interaction proto-
cols and communication languages. Also‚ FIPA services can be imple-
mented over different communication technologies‚ like RMI‚ CORBA‚
or HTTP based. JADE (Bellifemine et al.‚ 2001) (see http: // jade.

cselt.it) and FIPA-OS (see http://fipa-os.sourceforge.net) im-
plement FIPA standard. Other implementations of FIPA are available at
http://www.fipa.org/resources/livesystems.html.

Non-standard. A frequently referred work is RETSINA (see http://

www.cs.cmu.edu/~softagents). This framework deals with advanced
matchmarking capabilities (Sycara et al.‚ 1999) that facilitate locating
agents relevant for a certain task. RETSINA also indicates a kind of
MAS infrastructure by identifying general tasks to be accomplished in
the system‚ and roles that tend to appear‚ like information brokers. Read-
ers will find that RETSINA has been applied in several projects and
lots of papers are available about different aspects of RETSINA. Also‚
RETSINA supplies software to create agents in their Web site.

MADKIT (http://www.madkit.org) is an extensible framework for
design‚ in which the graphical front-end is just an optional plugin; it
is based on the AAladin framework already mentioned in the analysis
section. It provides a basic kernel of MAS where concrete functionality
can be plugged in. Also it includes graphical tools to launch‚ monitor‚ or
kill agents.

In case readers are interested in developing agents using AI approaches‚
a good choice is ABLE (see http://www.alphaworks.ibm.com). It can
define agents in terms of predefined modules that implement several con-
trol mechanisms ranging from neural networks to decision trees. It also
implements learning algorithms‚ like inference learning. These compo-
nents can be interconnected in a graphical front-end or manually by a
couple of lines of code. This framework is a good tool if the devel-
oper wants to experiment how to control an agent by combining different
techniques.

www.manaraa.com

A Survey on Agent-Oriented Oriented Software Engineering Research 55

The number of non-standard platforms is appealing. Previous ones have
been selected due to their impact and sucess in dealing with different agent
features. In any case‚ the platforms referred here are only a small percent.
Readers are strongly advised to consult reviews of agent platforms such as (Ri-
cordel and Demazeau‚ 2000)‚ that centers on the suitability of agent develop-
ment tools from a methodological point of view‚ or (Mangina‚ 2002)‚ that is an
exhaustive survey of MAS development frameworks.

4. Implementation

Implementation is the translation of design concepts to programs compilable
to executable code or interpretable. To implement a MAS‚ the language may
be conventional or agent-oriented. This chapter assumes that‚ despite the high
level of abstraction of agent oriented languages‚ they are still programming
languages. Therefore‚ proposing a development using exclusively an agent
oriented language‚ without specialized analysis notations‚ or without taking
into account design concerns‚ may be affordable in a small development. But‚
the same approach in a medium size may not be realistic.

This section does not addresses the problems of reusing software (agent
platforms‚ MAS frameworks‚ development environments). It is assumed that
these elements have already been selected in the design and their influence
taken into account. So the problem is to select a language to implement these
components. If the developer is using some existing software‚ perhaps there is
no choice.

Declarative languages (functional and logic-based).

April (McCabe and Clark‚ 1995) is a functional language that in-
corporates communication facilities. Examples of April can be ob-
tained from http://www.nar.fujitsulabs.com. Reference man-
uals available from April Web site contain examples of application.

Concurrent-METATEM (Fisher‚ 1995) allows to express temporal
logic programs. A previous paper (Fisher‚ 1994) shows applica-
tions of this language and some small examples.

CLIPS stands for C Language Integrated Production System. It is
an expert system shell that can be used to implement the behavior
of an agent. The behavior can be expressed using rules‚ as it is
done in some works referred in this chapter. Tools and manuals
for CLIPS can be downloaded from http://www.ghgcorp.com/

clips/CLIPS.html. JESS (Friedman-Hill‚ 2003) is a port to Java
of CLIPS. JESS has been used into JADE agents as an alternative
to the default JADE behavior definition.

www.manaraa.com

56 Methodologies and Software Engineering for Agent Systems

Mozart (see http://www.mozart–oz.org) is a (multiparadigm)
language. In concrete‚ it is a functional concurrent object-oriented
language with some enhancements to support mobility‚ (van Roy
and Haridi‚ 1999) is a review of some agent-based projects using
Mozart.

Prolog is a pioneer language in logic programming. Its origin is
quite complex and many researchers have worked on it. (Cohen‚
1988) contains a review of relevant research work involved in the
creation of this language. There are many implementations of this
language and suitable extensions. (Sadri and Toni‚ 1999) contains
references to extensions of this language to define agents. Each
extension provides its own examples of application.

Lisp (McCarthy‚ 1978) is one of the first languages in AI. There is
a huge collection of libraries and utilities based on Lisp (http://
www.alu.org). This site also contains references to applications of
Lisp to agents‚ like LISA (see http://lisa.sourceforge.net)‚
a production-rule system implemented in Lisp‚ or OSCAR (see
http://oscarhome.soc-sci.arizona.edu)‚ an architecture for
anthropomorphic agents.

Agent-oriented languages. They incorporate concepts common to agent
theories but do not provide primitives dealing with concurrence or tem-
poral logic.

ConGOLOG (De Giacomo et al.‚ 2000) is a language based on sit-
uation calculus. It is the concurrent version of GOLOG. It is down-
loadable from http://www.cs.toronto.edu/cogrobo/systems.

html‚ where development examples are also available. For more
details on ConGOLOG‚ readers can consult (Lesperance et al.‚
1999) where authors model a mail-order business.

Agent0 (Shoham‚ 1993) is the first agent-oriented language. Un-
fortunately‚ there are no interpreters available. PLACA (Thomas‚
1995) is frequently referred as an extension of Agent0 to MAS. It
incorporates ideas of planning among several agents. As Agent0‚
it cannot be found in the Internet.

AgentSpeak(L) (Rao‚ 1996) is designed as a definition language
for BDI agents. SIM SPEAK (Machado‚ 2003; Machado and Bor-
dini‚ 2001) is an implementation of AgentSpeak(L). There is an
extension named AgentSpeak(XL) (Bordini et al.‚ 2002) that in-
corporates elements from TAEMS (Decker‚ 1996b) to the original
work.

www.manaraa.com

A Survey on Agent-Oriented Oriented Software Engineering Research 57

MAML (Gulyas and Corliss‚ 1999) is a language to model social
simulations of MAS. It is derived from SWARM (see http://www.

swarm.org)‚ another language for MABS. Tutorials‚ software‚ and
examples can be accessed at http://www.mam1.hu.

3APL (Hindriks et al.‚ 1999) stands for An Abstract Agent Pro-
gramming Language. This language has been defined to express
control and deliberation in BDI agents. There is software‚ tutori-
als‚ and examples available at 3APL Web site http://www.cs.uu.

nl/3apl.

Of course‚ a developer can choose any conventional language: structured or
object-oriented. In these cases‚ the developer has to rely on libraries that pro-
vide basic functionality‚ like communication facilities. Most of the agent plat-
forms presented in previous sections are implemented using object-oriented
paradigm. However‚ it may be needed to integrate different programming
paradigms into a single architecture. In that case‚ there are three possibili-
ties: wrapping the foreign language‚ creating mediators among these structures
implemented in different languages‚ or simply rewriting foreign code. Wrap-
ping is the solution to integrate expert system shells and agent architectures‚
as the JESS and JADE integration. For mediators‚ a low cost solution is to
use middleware‚ like CORBA. Mediators of components implemented in dif-
ferent languages offer a remote interface‚ which is accessible using the same
facilities. Rewriting should be the last option‚ since it requires a lot of work.

In combination with these languages‚ the developer can use other purpose
specific languages. There are languages specially designed to cover issues
like coordination‚ knowledge representation‚ or ontology representation. Ref-
erences to such languages have been already mentioned in the previous section
dealing with architectural issues.

5. Testing
Testing enables to identify the existing failures and to check if the code

sticks to the specification of the system or at least‚ if it satisfies the require-
ments of customers. In this stage‚ classic software engineering distinguishes
between validation and verification. Citing (Boehm‚ 1984)‚ in the case of val-
idation‚ an engineer focuses on the question “Am I building the right soft-
ware?‚” whereas in the case of verification‚ the focus is on the question “Am I
building the software right?” In other words‚ verification is concerned with the
(formally) checking the internal consistency of specifications‚ and validation is
concerned with checking the specifications’ consistency with the stakeholder’s
intentions.

Research in testing MAS has mainly addressed verification aspects. Vali-
dation of MAS has been studied in works related with agent-oriented require-

www.manaraa.com

58 Methodologies and Software Engineering for Agent Systems

ments engineering‚ like i* and Tropos. As it was reviewed in the analysis‚ soft-
ware requirements are labelled as goals. As they appear as first-class concepts
of the specification‚ it is easy to say if some requirement has been considered or
not. It is a matter of checking whether a goal has any associated activity or not.
This naive approach does not work in all cases. For an example of more com-
plex validation using a AORE approach‚ readers can consult (Dubois‚ 1998).
This paper contains an example of validating a system using the specification
language Albert II. The paper also describes a tool able to simulate the speci-
fication so that clients can see how it should work and perform the validation
themselves.

Since there is more literature dealing with verification than validation in
the agent domain‚ verification will be considered in detail in the next section.
The last section will be dedicated to study debugging approaches with agents.
Debugging is the complementary task of validation and verification. It seems
coherent to reference also research works and tools that help developers to find
out exactly why the program has failed.

5.1 Verification of MAS

As an introduction to conventional software engineering testing techniques‚
readers can consult (Pressman‚ 1982). The most relevant ones are black box
and white box tests. The first considers the system as a black box where only its
inputs and outputs are known. The second is quite similar‚ although it assumes
a certain knowledge of internals of the black box. In MAS‚ white and black
box testing is rarely published as original research. Though still infrequent‚
MAS formal verification is more likely to appear.

Formal verification is based on the existence of an specification expressed
with a formal language. In the analysis section‚ there was a review of different
languages that could be used for formal specification. The verification itself
can be applied anytime. A verification usually demonstrates the correctness
of a program with respect to a specification of what it has to do. For instance‚
based on Petri Nets formalisms‚ (Xu et al.‚ 2002) determine if a plan performed
with the collaboration of several agents can be performed. For this‚ they input
a Petri Nets specification of the plan. On the other hand‚ to verify commu-
nication from AUML diagrams‚ (Poutakidis et al.‚ 2002) suggest a mapping
method from AUML diagrams to Petri Nets‚ which well-known algorithms of
deadlocks detection are associated with.

According to (Wooldridge and Ciancarini‚ 2000) there is little work in the
verification of MAS. Existing works could be categorized into axiomatic ap-
proaches and model checking approaches. The first have several variants and
all of them can be considered as theorem proving problems. Research in auto-
mated theorem proving field started early in the last century. Unfortunately‚ it

www.manaraa.com

A Survey on Agent-Oriented Oriented Software Engineering Research 59

requires high skills in logics for those interested in applying it. For an overview
of what kinds of theorem proving techniques exist‚ readers can consult (Bled-
soe‚ 1985)‚ a survey frequently referred in the area. With respect to application
of theorem proving in MAS‚ (Wooldridge and Ciancarini‚ 2000) cites works
in which axiomatic verification is applied to MAS specified with BDI logics
and Concurrent METATEM. However‚ as (Wooldridge and Ciancarini‚ 2000)
notice‚ a main problem here is how to apply this kind of verification when the
BDI principles are implemented with non-logic based languages‚ such as C++
or Java. This is known as the computational grounding problem.

Let us also mention the trend called design by contract (Meyer‚ 1992) that
consists in defining pre/postconditions and invariants for the methods or proce-
dures of the code and verifying them in runtime. Violating any of them raises
an exception. This technique is built-in in last versions of Java and can be sim-
ulated in C++ (Plosch and Pichler‚ 1999). The problem is this technique does
not check program correctness‚ it just informs that a contract has been violated.

Model checking is less fine grained than axiomatic approaches‚ but also
more tractable. It consists in verifying concrete properties that a system must
satisfy. The method inputs a model of the system to check and a property
definition. Of course‚ the language in which model and property are defined
is relevant. This approach seems to be well accepted by industry. Its difficulty
is the identification of the interesting properties to check. Some of them are
listed hereafter‚ extracted from the literature:

Liveness. The agent always has something interesting to do. According
to Wooldridge’s model (Wooldridge‚ 1992)‚ this is related to the weakly
complete concept: there should always be at least one applicable action
or message available to every agent‚ whatever its beliefs. This property
is relevant because a developer surely wants that the agents do not get
stuck.

Deadlock free. A MAS‚ or some agents belonging to it‚ may fall in dif-
ferent kinds of deadlocks. A deadlock means‚ in general‚ that an agent is
blocking others and being blocked at the same time. This may happen‚
for instance‚ when there are shared resources among agents and an agent
requires a resource that the other holds and viceversa‚ but none of them
wants to release them. There have been thorough deep studies of dead-
locks in the concurrent programming‚ operating systems and telecom-
munication literature. To have a deeper knowledge on deadlocks‚ theory
and practice‚ it is very recommended reading the classic (Coffman et al.‚
1971). This paper focuses on deadlocks mixing both theory and practice
on detection and prevention.

Another interesting property is that a task must not take the system to
an undesirable state. This is a property required in the situation calcu-

www.manaraa.com

60 Methodologies and Software Engineering for Agent Systems

lus approach of ConGOLOG (De Giacomo et al.‚ 2000). Unlike other
properties‚ ConGOLOG itself takes care of this aspect. For a developer‚
this property has a high value‚ since it ensures that state of the world
always changes according to the desires of the developer. However‚ in
real systems‚ this property is very hard to ensure.

Some free software is available to perform model checking and theorem
proving. (Bowen‚ 2003) contains references to this kind of software. As an ex-
ample of how to apply model checking to MAS‚ apart of those in (Wooldridge
and Ciancarini‚ 2000)‚ readers can consult agentTool (DeLoach‚ 2001) and
MABLE (Wooldridge et al.‚ 2002a). Both use SPIN model checker (Holz-
mann‚ 1991). agentTool uses SPIN allowing to identify deadlocks in agent
interaction. MABLE is a programming language enabling to include asserts in
the code. These are named claims. SPIN is used to verify their truthfulness.
It must be said that MABLE is different from the design by contract solution‚
that is verified only in runtime‚ whereas SPIN verifies during compilation.

Model checking‚ in principle‚ requires translating the system into a model
specified with a concrete language. SPIN uses as input a language named
PROMELA (Holzmann‚ 1991). However there are works that suggest that this
is not a compelling condition. For instance‚ (Visser et al.‚ 2000) have studied
how‚ from source code in C++‚ extract a model of the behavior of the agent‚
by adding some instructions to the original code‚ and then perform the model
checking.

5.2 Debugging MAS
What if something goes wrong? Researchers in debugging distributed sys-

tems give some answers. Debugging MAS is similar to debug open distributed
systems or concurrent systems. As developers know‚ an important problem
of distributed systems is that there is too much information to analyze. There
is literature that deals with this problem‚ like (Garcia-Molina and Germano‚
1984) or (Joyce et al.‚ 1987). (Joyce et al.‚ 1987) describes the construction of a
monitoring system and how collected information can be presented to the user.
Benefits of visual representations for debugging is also discussed in (Baecker
et al.‚ 1997)‚ where authors propose different kinds of visual and audio pre-
sentations of source code and insights of a program. In other trend‚ (Garcia-
Molina and Germano‚ 1984) proposes generation and later analysis of traces
of programs.

In the agent domain‚ there are few tools that can help to test and then debug
a system:

Zeus incorporates visual debuggers to view internal state of agents. Au-
thors of Zeus extend their ideas in (Ndumu et al.‚ 1999) proposing inter-
nal and external inspectors for a MAS.

www.manaraa.com

A Survey on Agent-Oriented Oriented Software Engineering Research 61

JADE has a sniffer agent that shows in a separate GUI what ACL mes-
sages are exchanged by the agents.

MADKIT (Gutknecht and Ferber‚ 2001) uses graphical tools and intro-
spection on agent code to discover at runtime groups and roles‚ refer-
ences to other agents‚ and other direct manipulation of these structures.

The drawback of these tools is that they must be used since the beginning of
the project. So‚ what if the framework or the agent platform is none of these?
Then‚ the developer should consider using the techniques commented at the
beginning of the section.

6. More Information

To broader the vision of the field‚ readers are invited to consult other sur-
veys. As a recommedation‚ it is suggested (Jennings et al.‚ 1998; Nwana and
Ndumu‚ 1999; Weiss‚ 2003) (the latter served as a main source of inspiration
for this chapter).

Current trends in software agents are well reflected in the AgentLink Web
site http://www.agentlink.org. Under AgentLink cover‚ there are regular
publications like the AgentLink Roadmaps‚ published each year‚ and special
interest research groups on different topics‚ like the Methodologies and Soft-
ware Engineering for Agent Systems (MSEAS) group‚ which is specialized in
methodologies. AgentLink also sponsors European Agent Systems Summer
School (EASSS)‚ a school whose proceedings contain tutorials about relevant
agent topics.

The Object Management Group‚ responsible of UML and CORBA stan-
dards‚ has a special interest group on agents (see http://www.objs.com/

agent/index.html) with links to projects and documents.
With respect to conferences‚ let us mention Autonomous Agents and Mul-

tiagent Systems (AAMAS) conferences‚ which are of very high quality and
the AOSE workshop‚ focused on software engineering for agents. There are
also chapters dedicated to MAS research in most conferences on Artificial
Intelligence‚ like ICAI‚ ECAI‚ or IBERAMIA‚ whose proceedings appear in
catalogues of relevant publishers.

7. Conclusions
This chapter has introduced briefly research results that can help developers

and MAS researchers to create MAS. It has surveyed which tools‚ software li-
braries‚ frameworks‚ theories‚ and methods are available today for developers.
Indeed‚ having so many results is good news since a developer can produce a
MAS with less effort than years ago. However‚ there are still important gaps
and questions‚ like how to jump from agent theories to MAS implementation‚

www.manaraa.com

62 Methodologies and Software Engineering for Agent Systems

which are the consequences of selecting a concrete agent architectures‚ how to
reuse existing MAS development experience in other developments‚ or what
concepts are needed to tackle with each aspect of a MAS. The agent commu-
nity is making a huge effort to answer these and others questions‚ and this is
not a trivial task at all. So the best way to finish this chapter is simply con-
gratulating researchers for the work done and encouraging them to keep on
contributing to this field.

Acknowledgements
Gerhard Weiss greatly acknowledges support by the German National Sci-

ence Foundation (DFG) under contract Br609/11-2. Jorge J. Gomez Sanz ac-
knowledges support by Spanish Ministry of Science and Technology under
grant TIC2002-04516-C03-03 and Ruben Fuentes and Juan Pavon for reading
this chapter and providing useful comments.

www.manaraa.com

II

METHODOLOGIES FOR
AGENT-BASED SYSTEMS DEVELOPMENT

www.manaraa.com

Introduction

Because MAS are relevant to solve complex and distributed problems‚ soft-
ware to be designed is more and more complex. This complexity comes from
different difficulties such as:

Identifying the task the global system has to solve;

Identifying what entity in the application is an agent;

Defining interactions between agents;

Specifying adequate and/or complex protocols;

Defining interactions between the system and its environment; and

Defining the agent’s relevant behavior.

Software to design deals with new concepts such as: agent‚ goal‚ task‚ services‚
organization‚ interactions‚ environment‚ etc. New tools and models are there-
fore needed to help engineers to work with these new notions. Furthermore‚
software contains a huge amount of code lines and their distribution increases
the complexity for designers who are obliged to take into account new prob-
lems such as mobility or security. Methodologies must help designers to deal
with these problems and have to manage this complexity. Moreover‚ in order
to have‚ in a near future‚ agent and MAS developed in the industrial world‚
designing methodologies to facilitate and to support agent-based systems en-
gineering is becoming more and more important. A methodology should facil-
itate the software engineering process by providing a rigorous process which
enables the generation of a set of models describing‚ using a precise notation‚
the different aspects of the software to be designed. An agent- or multiagent-
based methodology consists of a process‚ a modeling language‚ or notation‚
and tools to support the process and the notation and to help designers. At
present‚ it is a widely accepted fact that the main phases of the process are

www.manaraa.com

66 Methodologies and Software Engineering for Agent Systems

similar to those used in object-oriented methodologies: requirements‚ analysis
(or specification)‚ design‚ development (or implementation) and deployment of
the system. All the phases of the process are using models and are divided into
steps. The life cycle of the development process is generally not sequential but
rather iterative and regular backtracks are needed. During the different steps of
the process‚ the modeling language enables designers to express all the models
and all the elements that are needed to define the system to be done and to re-
alize verifications during the software engineering. Standardizing the notation
at this level or using standards such as UML are important. A methodology
generally provides tools‚ that are associated with the notation‚ in order to sup-
port the graphical notation and to realize some consistency validation. Because
agent and multiagent oriented methodology is a new field of research and be-
cause the new paradigms of agent are associated with new concepts‚ the main
works focus on the first three phases of the process: requirements‚ analysis and
design. But‚ there are a lot of works related to agent platforms which can be
used in the development and deployment phases. This part of the book deals
with three well-known and general methodologies in particular:

Chapter 4‚ “The Gaia Methodology” by Luca Cernuzzi‚ Thomas Juan‚
Leon Sterling and Franco Zambonelli describes the key concepts of the
Gaia methodology. The analysis and design phases of software engi-
neering are using five models: role‚ interaction‚ agent‚ services and ac-
quaintance models. Then‚ the authors are focusing on three extensions
to overcome the limitations of the first version of Gaia. The new version
enables the development of open systems and uses standard notations
such as UML and AUML. The environmental model is defined in the
analysis phase and the organizational rules and the organizational struc-
tures are taken into account in the design phase.

Chapter 5‚ “The Tropos Methodology” by Paolo Giorgini‚ Manuel Kolp‚
John Mylopoulos and Marco Pistore gives an overview of Tropos. It de-
scribes the main phases of software engineering such as: the requirement
analysis‚ the architectural design and the detailed design. Tropos is char-
acterized by the fact that it focuses on the requirements phase and that
all the development process is based on mentalistic concepts of agents
such as agent‚ role‚ goal‚ task‚ etc. Several tools help designers in the
different phases of the development. A specification language‚ Formal
Tropos‚ associated with a tool‚ T-Tool‚ enables the verification of errors‚
ambiguities and under-specification during the requirements analysis.

Chapter 6‚ “The MaSE Methodology” by Scott Deloach‚ presents this
methodology based on UML notation. The author focuses on the analy-
sis and the design phases. During analysis‚ concepts like goals and roles

www.manaraa.com

Introduction 67

are used. The design phase enables the definition of the agent classes‚
the agent architecture and the coordination protocols between agents.
This phase ends with a deployment diagram. The methodology is sup-
ported by the agentTool software which provides some verification of
the protocols and enables automatic code generation.

The last chapter of this part presents multiple criteria to evaluate and com-
pare existing methodologies and in particular the three described in this book.
Chapter 7‚ “A Comparative Evaluation of Agent-Oriented Methodologies” by
Arnon Sturm and Onn Shehory proposes a framework composed of multiple
dimensions and a metric to evaluate and compare agent-based methodologies.
The different axes proposed to evaluate a methodology are: concepts and prop-
erties related to agents and MAS‚ notation and modeling techniques‚ develop-
ment process and pragmatics. Gaia‚ Tropos and MaSE are evaluated with this
framework. In a general way‚ the obtained results are quite positive.

www.manaraa.com

Chapter 4

THE GAIA METHODOLOGY

Basic Concepts and Extensions

Luca Cernuzzi‚ Thomas Juan‚ Leon Sterling and Franco Zambonelli

Abstract Gaia (Wooldridge et al.‚ 2000b) was the first complete methodology proposed
for the analysis and design of MAS. However‚ the original version of Gaia suf-
fered from the limitations of being suitable for the analysis and design of closed
MAS and of adopting non-standard notation techniques. Several extensions to
the basic Gaia methodology have been recently proposed to overcome these limi-
tations. In this chapter‚ we summarize the key characteristics of the original Gaia
methodology and present three extensions that have been proposed to improve
Gaia and make it more suitable for the development of open MAS in complex
environments.

1. Introduction
Gaia was the first complete methodology proposed to guide the process of

developing a MAS from analysis to design.
The first version of Gaia‚ described in (Wooldridge et al.‚ 2000b)‚ empha-

sizes the necessity to identify proper agent-oriented abstractions around which
to base the process of MAS development. Gaia outlines the suitability of the
organizational metaphor. A MAS is conceived as a computational organization
of agents‚ each playing specific roles in the organization‚ and cooperating with
each other towards the achievement of a common application (i.e.‚ organiza-
tional) goal.

The Gaia methodology has been quite influential over the past few years.
However it suffers from several limitations that may undermine the possibility
of its effective adoption for the majority of real-world multiagent scenarios.

A first limitation derives from the fact that Gaia‚ in the original proposal‚ is
suitable only for the analysis and design of closed MAS‚ in which agents must
be benevolent to each other and willing to cooperate. Unfortunately‚ this is not

www.manaraa.com

70 Methodologies and Software Engineering for Agent Systems

the case for many MAS‚ where agents can belong to different stakeholders and
can express self-interest in actions.

A second limitation relates to the fact that the notations used by Gaia to
model and represent a MAS and its components appears unsuitable to tackle
the complexities of real-world systems and‚ even worse‚ do not follow accepted
software engineering standards.

As a consequence of the above limitations‚ improvements to the basic Gaia
methodology have been proposed in order to both capture the characteristics
of open MAS in complex open environments and to improve its notation tech-
niques. This chapter briefly presents the original version of the Gaia methodol-
ogy and three proposals for extensions: two proposals extend the basic process
of Gaia to make it suitable for open MAS‚ while a third proposal integrates
standard notation techniques in Gaia.

To exemplify the concepts expressed in this chapter‚ we exploit a simple
running example in the area of agent-mediated marketplaces‚ as a typical ex-
ample of an open MAS in which agents may exhibit self-interested behaviors.
In agent-mediated marketplaces‚ agents interested in buying and selling spe-
cific classes of goods will meet together to access an environment made up of
“wanted requests” and “sales offers.” Transactions typically take place in the
form of open public auctions. Agents meeting at a marketplace will form dy-
namic and open organizations in which agents themselves can play roles such
as “client” and “provider” when publishing requests and offers for goods‚ as
well as roles such as “bidder” and “supplier” when subsequently involved in
an auction. The intrinsic openness of the marketplace‚ where different agents
each with its own goals may enter to negotiate‚ raises issues of controlling
proper ways to conduct negotiations‚ i.e.‚ avoiding agents cheating with each
other. Moreover‚ it is possible to conceive of several interacting organizations
co-existing in a marketplace. For example‚ one could have two independent
organizations for dealing with the auction phase and the subsequent payment
and delivery phases.

2. Gaia in a Nutshell

The first version of the Gaia methodology is described in (Wooldridge et al.‚
2000b). The scope of the methodology includes the analysis and design phases
and exclude both collection of specifications and implementation. It is applied
after the requirements are gathered and specified.

In general‚ the Gaia process consists in constructing a series of models‚ as
shown in Figure 4.1. The models are aimed at describing both the macro (soci-
etal) aspects and the micro (intra-agent) aspects of a MAS‚ generally conceived
as an organized society of individuals (i.e.‚ a computational organization of au-
tonomous entities). In the analysis phase‚ the role model and the interaction

www.manaraa.com

The Gaia Methodology 71

Figure 4.1. Models in the Gaia methodology (Wooldridge et al.‚ 2000b)

model are constructed‚ depicting the system as a set of interacting abstract
roles. These two models are then used as input to the design stage‚ in which
an agent model‚ a services model‚ and an acquaintance model are defined to
form a complete design specification of the MAS to be used for the subsequent
implementation phase (not dealt with by Gaia).

2.1 Analysis with Gaia
In the analysis stage‚ roles in the system are identified and their interactions

are modeled.
Roles are abstract constructs used to conceptualize the system‚ with no con-

crete counterpart in the implemented system. In Gaia‚ all roles are atomic
constructs and cannot be defined in terms of other roles. A role schema is
intended to be a semi-formal description of an agent’s behavior‚ and the col-
lection of role schemas for a system define the complete role model. For each
role‚ a role schema is defined in terms of four attributes: permissions‚ respon-
sibilities‚ activities and protocols.

Permissions express the environmental resources available to the role‚ usu-
ally in terms of the information that the role can read‚ write or create. The
permissions specify both what the role can and cannot use.

Responsibilities of a role define the role’s actual functionality. There are
two types of responsibilities‚ safety properties and liveness properties. Safety
properties are properties that the agent acting in the role must always preserve.
These are expressed as predicates over the variables/resources in the permis-
sions of the role‚ specifying the legal values these variables/resources can take.
Liveness properties describe the “lifecycle” or generalized behavior pattern of
the role. Liveness properties are represented by a regular expression (see

Table 4.1 for the syntax of liveness properties) over the sets of activities
and protocols the role executes. There‚ activities are intended to represent
those tasks or actions a role can take without interacting with other roles‚ while

www.manaraa.com

72 Methodologies and Software Engineering for Agent Systems

Figure 4.2. Schema for role BIDDER

protocols are tasks or actions a role can take that involve interaction with other
roles.

For the purpose of our running example of the agent marketplace‚ we iden-
tify five possible roles: Client‚ Bidder‚ Provider‚ Supplier‚ and Auctioneer. In
an actual implementation of the system‚ it is expected that the roles Client and
Bidder will be played by buyer agents‚ Provider and Supplier by seller agents‚
and that the role Actioneer will be played by auctioneer agents. However‚
the Gaia analysis phase abstracts from the presence of agents playing specific
roles‚ an issue that is dealt with in the design phase. Three of those schemas
are presented according to the Gaia notation.

Taking a closer look‚ in Figure 4.4 an Auctioneer needs to access the offer
presented by a seller and to propose to the seller the highest price offered by
bidders‚ as stated in its permissions. The liveness expression‚ that may occur
0 or more times‚ specifies that whenever an agent implementing the Auction-

www.manaraa.com

The Gaia Methodology 73

Figure 4.3. Schema for role SUPPLIER

Figure 4.4. Schema for role AUCTIONEER

eer role receives a proposal of a service (by means of the ServiceProposed
protocol)‚ it then offers (using the Offers protocol) this proposal to the agents
fulfilling the bidders role‚ it receives price offers (using the ReceivePriceOffers
protocol) from the set of bidding agents‚ and then may accept the price or ask
for a new bid‚ using the AcceptPrice or AskForNewBid protocols respectively.
The safety expression states that an agent playing the Auctioneer role needs at
least one price proposal.

www.manaraa.com

74 Methodologies and Software Engineering for Agent Systems

Figure 4.5. A sample agent model

In addition to the role model‚ the Gaia anlysis phase includes the definition
of an interaction model‚ including a protocol definition for each protocol of
each role in the system. More attention is paid to the nature and purpose of the
interaction than to the sequence of execution steps and message exchanges. In
fact‚ the protocol definition describes the high-level purpose of the protocol‚
ignoring implementation details such as the sequence of messages exchanged.
In particular‚ the protocol definition is a simple table detailing the role initi-
ating the protocol‚ the role in charge of responding to it‚ the input and output
information processed in the protocol‚ as well as a brief textual description of
the type of information processing taking place during the execution of this
protocol.

2.2 Design with Gaia

In the design phase‚ the abstract constructs of the analysis stage‚ i.e.‚ the
roles and protocols represented in the role and interaction models‚ are mapped
into concrete constructs‚ i.e.‚ the agent types that will be instantiated at runtime.

Gaia requires three models to be produced in the design phase (see Fig-
ure 4.1): the agent model specifying the types of agents to form the actual
system‚ the service model specifying the services to be implemented by these
agent types‚ and an acquaintance model depicting communication links be-
tween agent types.

Assigning roles to agent types creates the agent model. Each agent type may
be assigned to one or more roles. For each agent type‚ the designer annotates
the cardinality of agent instances of that type at runtime. Figure 4.5 shows a
sample agent model where IBM takes both the Supplier role and the Bidder
role.

In Gaia‚ a service is simply a coherent block of functionality‚ neutral with
respect to implementation details. The service model lists services that agent
types provide. The services are derived from the activities and protocols of the
roles. For each service‚ four attributes must be specified‚ namely the inputs‚
outputs‚ pre-conditions and post-conditions. They are easily derived from at-
tributes such as protocol input‚ from the role model and the interaction model.

www.manaraa.com

The Gaia Methodology 75

The acquaintance model is a directed graph between agent types. An arc
from A to B signals the existence of a communication link allowing A to send
messages to B. The purpose is to allow the designer to visualize the degree of
coupling between agent types. In this model‚ further details such as message
types are ignored.

2.3 Limitations
Gaia was designed to handle small-scale‚ closed agent-based systems. Con-

sequently‚ it has weaknesses that render it inappropriate for engineering com-
plex open systems like agent marketplaces. Specifically‚ Gaia has the following
limitations:

Gaia cannot explicitly model and represent important social aspects of
a MAS. Among them‚ Gaia cannot explicitly model the organizational
structure of the agents in the system‚ or alternatively‚ the architecture
of the system with merely non-recursive roles. It also lacks the ability
to explicitly model the social goals‚ social tasks or organizational rules
within an organization of agents. These factors‚ together with the fact
that Gaia implicitly assumes all agents to be cooperative‚ make it clearly
unsuitable for open agent systems.

1

Gaia employs Gaia-specific notations for representing roles and proto-
cols. These notations – although simple and easy to catch – may be
somewhat poor for expressing complex problems such as complex multi-
phase interaction protocols.

2

Further limitations can be identified which are discussed less extensively in
this chapter. Gaia lacks a requirements modeling phase. Gaia lacks appropriate
environmental modeling‚ and domain knowledge modeling.

3. Gaia v.2

The official extension of Gaia‚ to which we will refer here as Gaia v.2‚ ex-
tends Gaia based on the key consideration that an organization is more than
a simply a collection of roles‚ as was considered in the first version of Gaia.
Additional organizational abstractions are to be identified (Zambonelli et al.‚
2003).

In particular‚ in Gaia v.2‚ in addition to roles and protocols‚ the environment
in which a MAS is immersed is elected to a primary analysis and design ab-
straction. The environment abstraction explicitly specifies all the entities and
resources a MAS may interact with to reach the organizational goal. In the
original version of Gaia‚ the description of the environment was implicit in
the definition of the permissions associated with roles‚ a choice that does not

www.manaraa.com

76 Methodologies and Software Engineering for Agent Systems

promote a clear understanding of the overall system and that does not help to
capture interactions between agents that may occur via the mediation of the
environment.

In addition to the environmental model, two further organizational abstrac-
tions come into play in Gaia v.2, namely, the organizational rules and the orga-
nizational structures.

Organizational rules aim to specify some constraints that the organization
will have to observe. Organizational rules may be global (concerned with all
the roles and protocols), or just concerned with the relations between some
roles, between some protocols, or between some roles and protocols in the
MAS. Organizational rules allow the system designer to explicitly define when
and under which conditions a new agent may participate in the organization,
which is its position, as well as which behaviors are accepted as self-interested
expressions and which ones have instead to be prevented by the organization.

Organizational structures, on the other hand, aim to make explicit the overall
architecture of the systems (the position of each role in the organization and its
relationship with other roles) and its choice, a choice that was instead implicitly
defined by the role model in the original Gaia.

Organizational rules and organizational structures are strictly related, in that
organizational rules may help designers in the identification of organization
structures that more naturally suit these rules. In this sense, Gaia v. 2 rec-
ognizes that the role model should explicitly derive from the choice of the
organizational structure, and not vice versa.

Considering all the above, an overview of the Gaia v.2 methodology with its
models and their relationships is presented in Figure 4.6.

3.1 Analysis in Gaia v.2

The analysis phase includes the identification of:

The goals of the organizations that constitute the overall system and their
expected global behavior. At this step it is important to identify useful
decomposition of the global organization into sub-organizations.

The environmental model that represents the environment (in terms of
computational variables/resources) in which the MAS will be situated.

The preliminary roles model. As in the original version of Gaia, the no-
tion of roles abstracts from any mapping into agents (this issue will be
considered in the design phase). However, in Gaia v.2, the analysis has
to avoid the imposition of a specific organizational structure implicitly
defined via the role model. Instead, Gaia v.2 prescribes to leave the role
model incomplete (i.e., with some of the inter-role interactions not iden-
tified), since only an accurate identification of the organizational struc-

www.manaraa.com

The Gaia Methodology 77

Figure 4.6. Models of Gaia v.2 and their Relationships (Zambonelli et al., 2003)

ture – to take place in the design phase – will enable exact understanding
of which roles will interact with which others.

The preliminary interaction model, which, as in the case of the role
model, abstracts away from the organizational structure and has thus to
be preliminary (e.g., with some of the partners in a protocol undefined).

The organizational rules that govern the organization in its global behav-
ior. Such rules impose constraints on the execution activities of roles and
protocols. They are fundamental to efficiently specify how, in an open
MAS, external self-interested agents can execute without undermining
the overall consistency of the developing MAS.

The output of the analysis phase consists of four basic models: (i) the envi-
ronmental model; (ii) a preliminary roles model; (iii) a preliminary interactions
model; and (iv) a set of organizational rules.

3.2 Design in Gaia v.2

The design phase includes the following sub-phases:

www.manaraa.com

78 Methodologies and Software Engineering for Agent Systems

Definition of the overall architecture of the system, i.e., of the organiza-
tional structure, taking care that it accommodates all preliminary roles
and interactions identified in the analysis phase, and taking care that the
adopted structure facilitates the enactment of the organizational rules.

A great number of different organizational structures may be available
for designers to better deal with functional and efficiency requirements.
Nevertheless, it is highly probable that a reduced subset of these struc-
tures are normally adopted. This opens up the opportunity to exploit, in
this phase, existing catalogs of organizational patterns.

Revision and completion of the preliminary role and interaction models,
on the basis of the adopted organizational structure.

Definition of the agent model specifying agent types (a set of agent roles)
and agent instances, as in the original version of Gaia.

Definition of the services model, as in the original version of Gaia, to
specify the main services (blocks of activities with their pre-conditions
and post-conditions) that agent types have to provide.

3.3 Discussion

The general framework of Gaia v.2 exploits consistently novel organiza-
tional abstractions to overcomes some of the limitations identified in the orig-
inal version of Gaia. Specifically, Gaia v.2 is more oriented to designing and
building systems in complex, open environments. It is easy to see, in fact, that
the explicit adoption of an environmental model, of the organizational rules
and of the organizational structures, enables capturing and modeling the agent
marketplace example in a more effective and flexible way.

The need to request goods and/or a service usually implies, in agent market-
places, the request for a set of offers by sellers, and receipt of the offers, and
the evaluation by the buyer, after which the service provision is assigned to the
winner. However, the choice of which specific process to adopt for this trans-
action represents an important design choice, that should be made explicit, as
in Gaia v.2, and that requires a proper identification of the environmental char-
acteristics and of the organizational rules.

In a closed system, making buyer and sellers interact directly, without the
mediation of any auctioneer, may be satisfactory since not self-interested be-
havior is likely to occur. However, in an open system, specific organizational
rules may be identified that should govern the interactions between roles and
that should drive the identification of the organizational structures. If we as-
sume that agents are not benevolent to each other (as in real-world open auc-
tions), the need to properly constrain the way agents negotiate (e.g., via a rule

www.manaraa.com

The Gaia Methodology 79

Figure 4.7. System viewed as a computational organization made up of the role hierarchy and
the agent hierarchy

requiring buyers to submit bids to sellers in an ordered and monotonically
increasing way) may require adopting an organizational structure in which a
central role is given to an agent playing the Auctioneer role. Also, the explicit
representation of the environment (i.e., a computational environment made up
of goods, prices, bids) may enable identifying some problems such as, e.g.,
the fact that specific bids should not be made public or should not be changed
arbitrarily by agents.

4. The ROADMAP Methodology

Another extension to Gaia is ROADMAP, proposed at the University of
Melbourne and first described in (Juan et al., 2002). It should be noted that
ROADMAP was proposed earlier than Gaia v.2. Coherency of presentation
dictated the discussion of Gaia v.2 before ROADMAP in this chapter.

ROADMAP started as an attempt to extend the original version of Gaia with:
a dynamic role hierarchy (as a way to deal with open agent systems), additional
models to explicitly describe the agent environment (as Gaia v.2 does), and the
agent knowledge (a feature that is very important in intelligent agent systems
and that is neglected by both Gaia and Gaia v.2). From Gaia, ROADMAP
inherits – other than the basic underlying process model – the organizational
view on MAS, and the basic definitions of roles, protocols, agents and ser-
vices. However, over time the semantics of these concepts in ROADMAP has
become quite different from Gaia, so that ROADMAP can, to some extent, be
considered a methodology on its own.

In ROADMAP, a system is viewed as an organization of agents, consisting
of a role hierarchy and an agent hierarchy (Figure 4.7).

The role hierarchy is the specification of the system, representing the correct
behaviour of agents. The agent hierarchy is the implementation of the system,
providing the actual functionalities. The role hierarchy constrains the agent

www.manaraa.com

80 Methodologies and Software Engineering for Agent Systems

Figure 4.8. Message passing between agents via their roles

hierarchy in the same way as organizational structures, responsibilities and
business procedures constrain individuals in a human organization. To some
extent, the role hierarchy plays in ROADMAP a similar role that organizational
structures and organizational rules play altogether in Gaia v.2.

Roles and protocols, as in Gaia, are first class entities in ROADMAP that,
unlike in Gaia, have concrete runtime realization in ROADMAP. In an organi-
zation of ROADMAP, in fact, agents interact by message passing, while roles
and protocols act as message filters (Figure 4.8).

Figure 4.8 shows an example of an official interaction in an organization
between Agent A and Agent B. The message from Agent A is first sent to and
validated by its role. If all constraints are satisfied, the message propagates
to Agent B’s role. After the message is validated, Agent B receives the mes-
sage and can now respond to it. As part of the organizational arrangement,
the message is also forwarded to Agent C’s role and to Agent C after valida-
tion for monitoring purpose. If the message fails to satisfy constraints from
any roles concerned, the message will be rejected and actions will be taken to
handle the error. This mechanism ensures the interaction respects perspectives
of all roles involved. Direct message passing between agents are considered
private and does not have the same official status in the organization. In some
organizations, private interaction is not desirable and maybe forbidden.

Protocols are reusable message patterns. As concrete runtime entities, they
can be reasoned and manipulated, effectively re-routing the interaction with-
out affecting the agent services (in grey) behind the protocols (Figure 4.9).
ROADMAP combines this notation with AUML (see chapter 12) to overcome
the rather poor notation for protocols adopted by Gaia and inherited by Gaia
v.2.

www.manaraa.com

The Gaia Methodology 81

Figure 4.9. Re-routing interaction with protocols

Figure 4.10 shows an example ROADMAP role. The main improvements
from Gaia roles are:

The new Sub-Roles attributes that use the aggregation semantics for
building a role hierarchy recursively. The “involves” keyword relates
sub-role attributes to parent role attributes. For example, a parent role
safety condition is maintained if and only if all involved sub-role safety
conditions are maintained.

The new knowledge attributes associating knowledge components with
roles.

Use of keywords “before”, “during” and “after” to limit the applicability
of attributes to a liveness state or a protocol. This allows pre-conditions,
post-conditions and invariants of protocols to be defined and the imple-
menting services constrained at runtime.

Evaluation functions such as Profit_Margin are specified. The functions
serve as an official measure of agent performance. The Goals attributes
nominate the correct evaluation functions for agents to optimize at a
given state. These functions can be implemented in any roles, agents
or resources.

The permission attribute can now include read or modify access to other
roles or protocols, allowing the organization to be changed at runtime
given the proper authorization.

1

2

3

4

5

The key ROADMAP concepts are outlined in the ROADMAP meta-model
(see Figure 4.11)

Figure 4.12 shows the structure of the ROADMAP models. The models
are grouped into three categories. The environment model and the knowledge

www.manaraa.com

82 Methodologies and Software Engineering for Agent Systems

Figure 4.10. A sample ROADMAP role definition

www.manaraa.com

The Gaia Methodology 83

Figure 4.11. The ROADMAP meta-model

Figure 4.12. Models in the ROADMAP methodology

model contain reusable high-level domain information. The use-case model,
interaction model, role model, agent model and acquaintance model are appli-
cation specific. The protocol model and service models describe potentially
reusable low-level software components.

www.manaraa.com

84 Methodologies and Software Engineering for Agent Systems

5. Extending Gaia with AUML

Gaia notation for representing roles, protocols, and multiagent organizations
in their whole is quite poor and unlikely to be widely accepted for industry so-
lutions. The notation has not been substantially enriched or extended in Gaia
v.2. The gap from industrial practice is quite evident with respect to the speci-
fication of agent interactions, as pointed out in (Shehory and Sturm, 2001). In
effect, the Gaia protocol model notation considers all the relevant aspects of a
protocol but may be too extensive to specify (one model for every interaction).
Further, the notation is quite informal and not based on a standard accepted by
industry. Although ROADMAP partially overcomes these problems by intro-
ducing richer notations, the possibility to adhere to existing standard notations
has to be evaluated.

5.1 AUML – Key Concepts
Our proposed extension is to re-use Agent UML (AUML) (see chapter 12),

a set of extensions to UML notation that have been proposed for modeling
agent-based systems. AUML builds on the acknowledged success of UML in
supporting industrial-strength software engineering. The core part of AUML
is the Agents Interaction Protocol (AIP). Protocols in AIP are specified by
means of protocol diagrams (extended sequence diagrams) that allow designers
to specify extended message semantics, parameterized nested protocols, and
protocol templates.

The key ideas of AUML that may be integrated into Gaia to enrich its ex-
pressiveness for specifying agent interactions are:

The protocol can be regarded as a whole entity and treated as a package.
AUML considers an AIP as a template, whose parameters may be roles,
constraints, and communication acts. This template approach expresses
in a more compact way and UML-like notation the same semantics of
the Gaia protocol notation, but it is easier to visualize.

Each protocol implies inter-agent interactions that are described using
sequence diagram, activity diagrams, and statecharts. AUML extends
sequence diagram notation in order to represent Agents (and eventually
their Class) and their Roles, and to support concurrent threads of interac-
tions. The activity diagram, particularly useful for complex interaction
protocols that involve concurrent processing, and statecharts are used to
specify the internal behavior of an agent.

1

2

AUML proposes other extensions to UML in order to better capture richer
role specification, packages with agent interfaces, deployment diagrams indi-
cating mobility, emergence, etc. However, those notations are less rich then

www.manaraa.com

The Gaia Methodology 85

those proposed for AIP and some of them are poor compared with Gaia no-
tations. For example, role specification in Gaia is more expressive, formal
and includes more relevant aspects (permissions and responsibilities) than pro-
posed in AUML.

Moreover, AUML is not a thorough methodology and does not cover all
the abstraction proposed by Gaia v.2. Specifically, AUML offers a quite poor
notation in covering the organizational structures and does not consider the
organizational rules (Parunak and Odell, 2001). It presents some barriers to
adapt to complex and open systems with self-interested behavior.

5.2 The Gaia Interactions Model in AUML

The proposed notation of Gaia for protocols is quite informal. Thus, in-
stead of the Gaia notation, we introduce the use of AIP notation proposed by
AUML. This implies that a protocol must be described as a sequence of ac-
tions and message interactions and may contain a set of atomic protocols as
defined in Gaia. In the agents marketplace example we have considered two
protocols for the contract phase: one for the “Wanted Request” model and one
for the “Auction” model. For space reasons we present just the package and
the activity diagrams for the “Auction” protocol, avoiding the statechart.

In Figure 4.13 and 4.14 it is possible to observe the protocol specifying an
Auction model with its respective activity diagram. It states that when the
Supplier proposes a service, the Auctioneer offers it to the Bidder looking for
the best price. Meanwhile, a Bidder may inform the Auctioneer that he has not
understood the proposal or may present a price offer. Once the Auctioneer has
evaluated the price it may accept it informing the Supplier, or reject it asking
for new bid.

The integration of AUML within Gaia leads to a richer notation for the
specification of protocols and inter-agent interactions since the AUML nota-
tion introduces different advantages. First, it specifies a distinguished set of
agent instances satisfying the agent role and class it belongs to; while Gaia just
specifies the role. Second, it is more compact specifying in a single diagram
a sequence of actions and messages interactions which may contain a set of
atomic protocols as defined in Gaia. Third, AUML is more formal and allows
the specification of time ordering of messages between agents. Finally, AUML
notation introduces an opportunity for agents to select a path in the interaction
according to their goals. The latter two aspects are described in Gaia using
natural language, introducing possible ambiguities and misunderstandings.

www.manaraa.com

86 Methodologies and Software Engineering for Agent Systems

Figure 4.13. The auction model protocol

Figure 4.14. The auction model protocol activity diagram

www.manaraa.com

The Gaia Methodology 87

6. Open Issues

Although the above described extensions are important steps towards the
improvement of the Gaia methodology, several other directions for improve-
ments can be identified.

One of these directions related to the modeling and specification of the MAS
environment. To model the environment, Gaia uses a notation inspired by FU-
SION for operation schemata (Coleman et al., 1994) complemented (in Gaia
v.2) by a graphical representation of the spatial, physical, or logical relation-
ships between environment resources and agents. Other authors give increas-
ing importance to environment modeling, which may be captured using tradi-
tional object diagrams, e.g., (Parunak and Odell, 2001). However, in most of
the cases (as well as in Gaia) these representations fail in properly capturing
the dynamic aspects of the environment. MAS environments may have their
own dynamics, which can notably influence the execution of a MAS, and such
dynamics deserve specific modeling for the analysis and design of a MAS to
be effective.

In addition, the organizational structures in Gaia are currently modeled us-
ing a simple, non standard, notation, simply expressing relationships among
roles (or agents) and complemented by graphical representations and textual
comments aimed at enriching the semantics. These representation, as well as
the representation of the organizational rules (currently exploiting FUSION-
like notation and temporal logic), may be improved.

Another important limitation refers to the lack, in Gaia, of any requirements
modeling phase. Although ROADMAP goes in that direction by proposing the
use of use case model to capture functional requirements, this is not enough.
For instance, specific agent methodologies exist that emphasise the require-
ments modeling phase. Among them, Tropos (see chapter 5) seems to be the
most formal, complete, and consistent. In the future, it may be useful to explore
the opportunity of exploiting and integrating in Gaia the models and notations
already exploited in Tropos for requirements engineering.

7. Conclusions

This chapter has summarized the key characteristics of the original ver-
sion of the Gaia methodology, and has presented three extensions that have
been proposed to it in order to overcome its limitations. On the one hand,
ROADMAP and the second version of Gaia, Gaia v.2, extend the original
methodology with additional abstractions that are necessary to make Gaia suit-
able for the analysis and design of complex open agent systems. On the other
hand, a proposal to integrate the standard AUML notation in the Gaia process
can make Gaia more expressive and easier to be accepted by software engi-
neers.

www.manaraa.com

88 Methodologies and Software Engineering for Agent Systems

Although the authors consider Gaia – when enriched with the extensions
described in this chapter – as one of the most effective methodologies for the
analysis and design of MAS, they are also aware of several limitations currently
affecting it. For instance, the lack of a requirements modeling phase and the
need for adopting even richer and expressive notations than Gaia and AUML
currently provide may require further research work.

Acknowledgments

The second author would like to acknowledge the support of the Smart In-
ternet Technology CRC.

www.manaraa.com

Chapter 5

THE TROPOS METHODOLOGY

An Overview

Paolo Giorgini, Manuel Kolp, John Mylopoulos and Marco Pistore

Abstract The objective of this chapter is to give an overview of Tropos methodology. Tro-
pos is based on two key ideas. First, the notion of agent and related mentalistic
notions, such as goals and plans, are used in all phases of software development,
from early analysis down to the actual implementation. Second, Tropos covers
the very early phases of requirements analysis, thus allowing for a deeper under-
standing of the environment where the software-to-be will eventually operate.
We illustrate the phases of the methodology, the Formal Tropos language, and
the social and intentional models that are used to support software development.

1. Introduction

The explosive growth of application areas such as electronic commerce, en-
terprise resource planning, and peer-to-peer computing has deeply and irre-
versibly changed our views on software and Software Engineering. Software
must now be based on open architectures that continuously change and evolve
to accommodate new components and meet new requirements. Software must
also operate on different platforms, without recompilation, and with minimal
assumptions about its operating environment and its users. As well, software
must be robust and autonomous, capable of serving end users with a minimum
of overhead and interference. These new requirements, in turn, call for new
concepts, tools and techniques for engineering and managing software.

For these reasons – and more – agent-oriented software development is gain-
ing popularity over traditional development techniques, including structured
and object-oriented ones, see, e.g., (Jennings, 2000). After all, agent-based
architectures do provide for an open, evolving architecture that can change at
run-time to exploit the services of new agents, or replace under-performing
ones. In addition, software agents can, in principle, cope with unforeseen cir-

www.manaraa.com

90 Methodologies and Software Engineering for Agent Systems

cumstances because their architecture includes goals along with a planning
capability for meeting them.

We are currently working on an agent-oriented development methodology
called Tropos (Castro et al., 2002). In a nutshell, Tropos is based on two
key features. First, the notion of agent and related mentalistic notions are
used in all software development phases, from the early requirements anal-
ysis down to the actual implementation. Second, the methodology emphasizes
early requirements analysis, the phase that precedes the prescriptive require-
ments specification. In this respect, Tropos is quite different from other agent-
and object-oriented software development methodologies.

Paying attention to the activities that precede the specification of prescrip-
tive requirements for the system-to-be (Dardenne et al., 1993; Yu, 1995) means
that developers can capture and analyze the goals of stateholders. These goals
play a crucial role in defining the requirements for the new system. Put another
way, prescriptive requirements capture the what and the how for the system-to-
be. Early requirements, on the other hand, capture the reasons why a software
system is developed. This new perspective, in turn, supports a more refined
analysis of system dependencies and a more uniform treatment of functional
and non-functional requirements.

Tropos adopts Eric Yu’s i* model which offers actors (agents, roles, or posi-
tions), goals, and actor dependencies as primitive concepts for modeling an ap-
plication during early requirements analysis. Tropos is intended to support four
phases of software development: early requirements analysis, concerned with
the understanding of a problem by studying its organizational setting; late re-
quirements analysis, where the system-to-be is described within its operational
environment, along with relevant functions and qualities; architectural design,
where the system’s global architecture is defined in terms of subsystems, inter-
connected through data, control, and other dependencies; and detailed design,
where the behavior of each component is defined in further detail.

The objective of this chapter is to present the Tropos methodology. Section 2
offers an overview of the methodology, while section 3 presents the Tropos
formal language, designed to support the methodology. Section 4 describes the
social patterns used during the development process, while section 5 presents
its goal model. Finally, section 6 summarizes the contributions of the proposed
methodology and points to directions for further work.

2. Overview

In this section we present briefly the four phases supported by Tropos, using
the Media Shop case study. Media Shop is a store selling and shipping media
items such as books, magazines, audio CDs, videotapes, and the like. Media
Shop customers (on-site or remote) can use a catalogue describing available

www.manaraa.com

The Tropos Methodology 91

items to fill their orders. Media Shop is supplied with the latest releases from
Media Producer and in-catalogue items by Media Supplier. To increase mar-
ket share, Media Shop has decided to open up Medi@, a B2C internet site.
Through it, a customer can put in orders to Media Shop through the internet.
She can also search the on-line store by either browsing the catalogue, or by
querying the database through keywords or full-text search. The system uses
communication facilities provided by Telecom Cpy and on-line financial ser-
vices supplied by Bank Cpy.

Early Requirements Analysis. It focuses on the intentions of stakeholders.
Intentions are modeled as goals. Through some form of goal-oriented anal-
ysis, these initial goals eventually lead to the functional and non-functional
requirements of the system-to-be (Dardenne et al., 1993). In i* (Yu, 1995),
stakeholders are represented as (social) actors who depend on each other for
goals to be achieved, tasks to be performed, and resources to be furnished. The
i* framework includes the strategic dependency model for describing the net-
work of relationships among actors, as well as the strategic rationale model
for describing and supporting the reasoning that each actor goes through con-
cerning its relationships with other actors.

A strategic dependency model is a graph involving actors who have strate-
gic dependencies among each other. A dependency describes an “agreement”
(called dependum) between a depending actor (depender) and an actor who
is depended upon (dependee). The type of the dependency describes the na-
ture of the agreement. Goal dependencies are used to represent delegation of
responsibility for fulfilling a goal; softgoal dependencies are similar to goal
dependencies, but their fulfillment cannot be defined precisely (for instance,
the degree of fulfillment is subjective); task dependencies are used in situa-
tions where the dependee is required to perform a given activity; and resource
dependencies require the dependee to provide a resource to the depender. As
shown in Figure 5.1, actors are represented as circles; dependums – goals,
softgoals, tasks and resources – are respectively represented as ovals, clouds,
hexagons and rectangles; and dependencies have the form depender depen-
dum dependee.

These elements are sufficient for producing a first model of an organiza-
tional environment. For instance, Figure 5.1 depicts an i* model of our Medi@
example. The main actors are Customer, Media Shop, Media Supplier and Me-
dia Producer. Customer depends on Media Shop to fulfill her goal: Buy Media
Items. Conversely, Media Shop depends on Customer to increase market share
and make “customers happy.” Since the dependum Happy Customers cannot
be defined precisely, it is represented as a softgoal. The Customer also depends
on Media Shop to consult the catalogue (task dependency). Furthermore, Me-
dia Shop depends on Media Supplier to supply media items in a continuous
way and get a Media Item (resource dependency). The items are expected to

www.manaraa.com

92 Methodologies and Software Engineering for Agent Systems

Figure 5.1. i* Model for a media shop

be of good quality, otherwise the Continuing Business dependency might not
be fulfilled. Finally, Media Producer is expected to provide Media Supplier
with Quality Packages.

Late Requirements Analysis. It results in a requirements specification which
describes all functional and non-functional requirements for the system-to-be.
In Tropos, the system is represented as one or more actors which participate
in a strategic dependency model, along with other actors from the system’s
operational environment. In other words, the system comes into the picture as
one or more actors who contribute to the fulfillment of stakeholder goals.

As late requirements analysis proceeds, the system (Medi@) is given addi-
tional responsibilities, and ends up as the dependee of several dependencies.
A strategic rationale model determines through a means-ends analysis how
the system goals (including softgoals) identified during early requirements can
actually be fulfilled exploiting the contributions of other actors. A strategic
rationale model is a graph with four types of nodes – goal, task, resource, and
softgoal – and two types of links – means-ends links and decomposition links.
A strategic rationale graph captures the relationship between the goals of each
actor and the dependencies through which the actor expects these dependencies
to be fulfilled.

The analysis in Figure 5.2 focuses on the system itself and postulates a root
task Internet Shop Managed providing sufficient support (++) to the softgoal
Increase Market Share. That task is firstly refined (via decomposition links)
into goals Internet Order Handled and Item Searching Handled, softgoals At-
tract New Customer, Security, Adaptability and Availability, and task Produce
Statistics. To manage internet orders, Internet Order Handled needs to be
achieved (means-ends link) through the task Shopping Cart. In turn, this task
is decomposed into subtasks Select Item, Add Item, Check Out, and a subgoal
Get Identification Detail. These are the main process activities required to de-
sign an operational on-line shopping cart. The latter goal is achieved either
through secure or standard form orderings.

www.manaraa.com

The Tropos Methodology 93

Figure 5.2. Strategic rationale model for Medi@

In addition, Figure 5.2 introduces softgoal contributions to model sufficient
and partial positive (respectively ++ and +) or negative (respectively – – and
–) support to softgoals Security, Availability, Adaptability, Attract New Cus-
tomers and Increase Market Share. The result of such a means-ends analysis
is a set of (system and human) actors who are dependees for some of the de-
pendencies that have been postulated.

Resource, task and softgoal dependencies correspond naturally to functional
and non-functional requirements. Leaving (some) goal dependencies between
system actors and other actors is a novelty. Traditionally, functional goals
are “operationalized” during late requirements, while quality softgoals are ei-
ther operationalized or “metricized” (Dardenne et al., 1993). In our example,
we have left four (soft)goals (Availability, Security, Adaptability and Increase
Market Share) for architectural design. The operationalization of these non-
functional requirements will depend on the type of architecture chosen during
design.

Architectural Design. A system architecture constitutes a relatively small, in-
tellectually manageable model of system structure, which describes how sys-
tem components work together (Shaw and Garlan, 1996). In Tropos, we have
defined organizational architectural styles (Kolp et al., 2001) for cooperative,
dynamic and distributed applications – such as MAS – to guide the design of
the system architecture. These organizational architectural styles are based on

www.manaraa.com

94 Methodologies and Software Engineering for Agent Systems

concepts and design alternatives coming from research in organization man-
agement. As such, they help match a MAS architecture to the organizational
context within which the system will operate. We present more details on these
organizational styles and the Tropos architectural design phase in section 4.

Detailed Design. It introduces additional detail for each architectural compo-
nent of a system. In particular, this phase determines how the goals assigned to
each actor are fulfilled by agents in terms of design patterns. Design patterns,
e.g., (Gamma et al., 1995), have attracted much attention. Unfortunately, the
literature focuses on object-oriented patterns, rather than the intentional and
social ones that are relevant here. Within Tropos, social patterns (Do et al.,
2003) are used to find a solution to a specific goal defined at the architectural
level through the identification of organizational styles and relevant quality at-
tributes. More details about social patterns are presented in section 4.

Detail design in Tropos also includes the specification of agent communi-
cation and agent behavior. To support this task, we propose to adopt existing
agent communication languages, such as FIPA-ACL (Labrou et al., 1999), and
extensions to UML, such as the Agent Unified Modeling Language (AUML)
(see chapter 12).

3. Formal Tropos
The Tropos framework supports the application of formal analysis tech-

niques for the verification of requirements specifications. The analysis is based
on Formal Tropos (hereafter FT), a specification language that offers all the
standard mentalistic notions of Tropos and supplements them with a rich tem-
poral specification language inspired by KAOS (van Lamsweerde, 2001). FT
allows for the description of the dynamic aspects of Tropos models. More pre-
cisely, in FT we focus not only on the intentional elements themselves, but
also on the circumstances in which they arise, and on the conditions that lead
to their fulfillment. In this way, the dynamic aspects of a requirements speci-
fication are introduced at the strategic level, without requiring an operational-
ization of the specification. With an FT specification, one can ask questions
such as: Can we construct valid operational scenarios based on the model? Is
it possible to fulfill the goals of the actors? Do the dependencies represent a
valid synchronization between actors?

In this section we give a short description of the key aspects of the FT lan-
guage. A full definition can be found in (Fuxman, 2001; Fuxman et al., 2001).

An FT specification describes the relevant elements (actors, goals, depen-
dencies, etc.) of a domain and the relationships among them. The description
of each elements is structured in two layers. The outer layer is similar to a
class declaration. It associates to the element a set of attributes that define its

www.manaraa.com

The Tropos Methodology 95

Figure 5.3. Excerpt of FT class declaration

structure. The inner layer expresses constraints on the lifetime of the objects,
given in a typed first-order linear-time temporal logic.

Figure 5.3 is an excerpt of the outer layer of the IT specification of the
Medi@ example. It focuses on the management of the on-line shopping cart.
Actors, intentional elements, and dependencies of the Strategic Rational Model
are mapped into corresponding “classes” in the outer layer of FT. Moreover,
“entities” (e.g., Cart and Item) are added to represent the relevant and non-
intentional elements of the domain. Several instances of a class may exist
during the evolution of the system. For example, different PlaceOrder in-
stances may exist for different customers, and several Addltem tasks can be
done during the management of a ShoppingCart.

Each class has an associated list of attributes. Most of the attributes in FT are
references to other classes and are used to define the relationships among the
different instances of these classes. For example, task ShoppingCart refers to
the specific Cart that is being managed (attribute cart) and to the PlaceOrder
dependency that triggered the management of the ShoppingCart (attribute
po). Moreover, each Cart refers to the set of items that have been added to

www.manaraa.com

96 Methodologies and Software Engineering for Agent Systems

Figure 5.4. Example of FT constraints

it. Constant attributes (i.e., attributes whose values do not change over time)
define static relations among the class instances of a model. For instance, the
cart associated to a given instance of ShoppingCart does not change. The
set of items associated to the cart, on the other hand, can change over time.
Special attribute actor associates a goal or task to the corresponding actor.
Similarly, depender and dependee attributes define the two actors involved in
a dependency.

Intentional elements have a Mode attribute that defines the modality of the
fulfillment of the goal or task. For instance, the mode of task ShoppingCart is
achieve, which means that the Medi@ actor wants to reach a state where the
management of the cart has been fulfilled and the corresponding order has been
placed. Softgoal Security, instead, has a maintain mode, since the security of
the system has to be continuously maintained.

Figure 5.4 contains some examples of constraints on the lifetime of class in-
stances that define the inner layer of an FT specification. Invariant constraints
define conditions that should be true throughout the lifetime of class instances.
Typically, invariants define relations on the possible values of attributes, or
cardinality constraints on the instances of a given class. For instance, the first
invariant of Figure 5.4 binds an Addltem task with its associated Shopping-
Cart task, while the second invariant imposes a cardinality constraint on the
Addltem tasks for a given Item.

Two critical moments in the lifecycle of intentional elements and dependen-
cies are the instants of their creation and fulfillment. Creation and fulfillment
constraints can be used to impose conditions for these two moments in the
life of an intentional element. The creation of a goal or task instance means
that the owner or depender expects or desires the achievement of the goal/task.

www.manaraa.com

The Tropos Methodology 97

Creation constraints should be satisfied whenever a new instance is created,
while fulfillment constraints should hold whenever a goal or softgoal is satis-
fied, a task is performed, a resource is made available, or a dependum is deliv-
ered. Creation and fulfillment constraints are further distinguished as sufficient
conditions (keyword trigger), necessary conditions (keyword condition), and
necessary and sufficient conditions (keyword definition).

A first usage of creation and fulfillment constraints is to relate subordinate
goals and tasks with their parent intentional elements. For instance, Figure 5.4
shows that a creation condition for an instance of task Addltem is that the
parent task ShoppingCart is not yet fulfilled: it is not possible to add further
items to a cart, once an order has been placed and task ShoppingCart has been
fulfilled. Together with the fulfillment conditions of task ShoppingCart, this
creation condition elaborates the decomposition relation between the two tasks
shown in Figure 5.2.

The fulfillment condition of softgoal Security requires that, whenever a
GetldentificationDetail goal has been fulfilled, the customer that has been
identified positively (gid.customer) coincides with the customer that is inter-
acting with the system for placing the order (gid.sc.po.depender), that is, in a
secure system we do not allow for invalid identifications.

Once a FT specification has been defined, it can be formally verified in order
to identify errors, ambiguities, and under-specifications. The verification phase
usually generates feedback on errors in the FT specification and hints on how
to fix them. In order to support the verification process, we have developed a
prototype tool, called the T-Tool (Fuxman et al., 2003), that is based on finite-
state model checking (Clarke et al., 1999; Cimatti et al., 2002). On the basis of
an FT specification, the T-Tool builds a finite model that represents all possible
behaviors of the domain that satisfy the constraints of the specification. The
T-Tool then verifies whether this model exhibits the desired behaviors.

The T-Tool provides several verification functionalities. Animation of the
specification consists of an interactive generation of a valid scenario, namely,
of a scenario that satisfies all the temporal constraints of the FT specifica-
tion. Animation allows for an immediate feedback on the effects of constraints
and for an early identification of trivial bugs and missing requirements. Con-
sistency checks verify that the FT specification is not self-contradictory. In-
consistent specifications occur quite often due to complex interactions among
constraints in the specification, and they are very difficult to detect without the
support of automated analysis tools. During the consistency checks, the T-Tool
verifies that there is some valid scenario that respects all the constraints of the
FT specification, that all the goals and dependencies are fulfillable in some sce-
narios, and other similar properties. Possibility checks verify whether we are
over-constraining the specification, that is, whether we have ruled out scenar-
ios expected by the stakeholders. These expected scenarios are described in the

www.manaraa.com

98 Methodologies and Software Engineering for Agent Systems

FT specification using possibility properties. For instance, a scenario that we
do not want to rule out is the possibility of interrupting the placement of an or-
der also if we have already added some items to the cart. This property can be
expressed by the following FT possibility. It requires that, even if items have
been added to the cart, it is possible to never fulfill a ShoppingCart task (with
“globally (c)” we specify that condition c is true through all future history of
the model):

Assertion properties verify whether the requirements are under-specified and
allowing for invalid scenarios. Also in this case, assertion declarations in the
FT specification are used to express conditions on the valid scenarios. For
instance, a requirement that one wants to be true is that the system is secure,
that is, that softgoal Security is fulfilled:

Since the fulfillment of the security goal depends on the success of goal Ge-

tldentificationDetail, the definition of the fulfillment conditions of this goal
need special care. If these conditions do allow for incorrect identifications, the
previous assertion is violated and an error is reported during the verification
phase.

4. Socially-Based MAS Architectures

System architectural design has been the focus of considerable research
during the last fifteen years. This has produced well-established architectural
styles and frameworks for evaluating their effectiveness with respect to partic-
ular software qualities. Examples of styles are pipes-and-filters, event-based,
layered, control loops and the like (Shaw and Garlan, 1996). In Tropos, we are
interested in developing a suitable set of architectural styles for MAS. Since
the fundamental concepts of a MAS are intentional and social, rather than
implementation-oriented, we turn to theories which study social structures that
result from a design process, namely Organization Theory and Strategic Al-
liances. Organization Theory, e.g., (Scott, 1998), describes the structure and
design of an organization; Strategic Alliances, e.g., (Morabito et al., 1999),
models the strategic collaborations of independent organizational stakeholders
who have agreed to pursue a set of business goals.

Organization Theory. It describes how organizations are actually structured
in practice, offers suggestions on how new ones can be constructed, and how
old ones can change to improve effectiveness. To this end, schools of organiza-
tion theory have proposed models such as the structure-in-5, the pyramid style,
the chain of values, the matrix, the bidding style to try to find and formalize
recurring organizational structures and behaviors.

www.manaraa.com

The Tropos Methodology 99

For instance the structure-in-5, as Minztberg proposed (Mintzberg, 1992),
specifies that an organization is an aggregate of five sub-structures. At the base
level sits the Operational Core which carries out the basic tasks and procedures
directly linked to the production of products and services (acquisition of inputs,
transformation of inputs into outputs, distribution of outputs). At the top lies
the Strategic Apex which makes executive decisions ensuring that the organi-
zation fulfills its mission in an effective way and defines the overall strategy of
the organization in its environment. The Middle Line establishes a hierarchy
of authority between the Strategic Apex and the Operational Core. It consists
of managers responsible for supervising and coordinating the activities of the
Operational Core. The Technostructure and the Support are separated from the
main line of authority and influence the operating core only indirectly. The
Technostructure serves the organization by making the work of others more
effective, typically by standardizing work processes, outputs, and skills. It is
also in charge of applying analytical procedures to adapt the organization to
its operational environment. The Support provides specialized services, at var-
ious levels of the hierarchy, outside the basic operating work flow (e.g., legal
counsel, R&D, payroll, cafeteria).

Figure 5.5 suggests a possible assignment of system responsibilities for our
Medi@ case study following the structure-in-5 organizational style. It is de-
composed into five principal components Store Front, Coordinator, Billing
Processor, Back Store and Decision Maker. Store Front serves as the Oper-
ational Core. It interacts primarily with Customer and provides her with a us-
able front-end Web application for consulting and shopping media items. Back
Store constitutes the Support component. It manages the product database and
communicates to the Store Front information on products selected by the user.
It stores and backs up all Web information from the Store Front about cus-
tomers, products, sales, orders and bills to produce statistical information to
the Coordinator. It provides the Decision Maker with strategic information
(analyses, historical charts and sales reports).

The Billing Processor is in charge of handling orders and bills for the Coor-
dinator and implementing the corresponding procedures for the Store Front. It
also ensures the secure management of financial transactions for the Decision
Maker. As the Middle Line, the Coordinator assumes the central position of
the architecture. It ensures the coordination of e-shopping services provided
by the Operational Core including the management of conflicts between it-
self, the Billing Processor, the Back Store and the Store Front. To this end,
it also handles and implements strategies to manage and prevent security gaps
and adaptability issues. The Decision Maker assumes the Strategic Apex role.
To this end, it defines the Strategic Behavior of the architecture ensuring that
objectives and responsibilities delegated to the Billing Processor, Coordinator
and Back Store are consistent with that global functionality.

www.manaraa.com

100 Methodologies and Software Engineering for Agent Systems

Figure 5.5. The Medi@ organizational architecture in structure-in-5

Strategic Alliances link specific facets of two or more organizations. At its
core, this structure is a trading partnership that enhances the effectiveness of
competitive strategies of participant organizations by providing for the mutu-
ally beneficial trade of technologies, skills, or products derived from them.

For instance, the joint venture style involves agreement between two or
more intra-industry partners to obtain the benefits of larger scale, partial in-
vestment and lower maintenance costs. A specific joint management actor co-
ordinates tasks and manages the sharing of resources between partner actors.
Each partner can manage and control itself on a local dimension and interact
directly with other partners to exchange resources, such as data and knowledge.
However, the strategic operation and coordination of such an organization, and
its actors on a global dimension, are only ensured by the joint management
actor in which the original actors possess equity participations.

Other styles are the arm’s-length style, the hierarchical contracting style or
the co-optation style.

Social Patterns. A further step in the architectural design of MAS consists of
specifying how the goals delegated to each actor are to be fulfilled (Kolp et al.,
2001). For this step, designers can be guided by a catalogue of multi-agent pat-
terns which offer a set of standard solutions. Considerable work has been done
in software engineering for defining software patterns, see, e.g., (Gamma et al.,
1995). Unfortunately, little emphasis has been put on social and intentional as-

www.manaraa.com

The Tropos Methodology 101

Figure 5.6. Decomposing the store front with social patterns

pects. Moreover, proposals for agent patterns that do address these aspects,
see, e.g., (Aridor and Lange, 1998), are not intended for use at a design level.
Instead, such proposals seem to aim at the implementation phase, when issues
such as agent communication, information gathering, or connection setup are
addressed.

Social patterns (Do et al., 2003) are design patterns focusing on social and
intentional aspects that are recurrent in multi-agent and cooperative systems.
In particular, the structures are inspired by the federated patterns introduced
in (Hayden et al., 1999; Kolp et al., 2001). We have classified them into two
categories.

The Pair patterns – such as booking, call-for-proposal, subscription, or bid-
ding – describe direct interactions between negotiating agents. For instance,
the Bidding pattern involves an initiator and a number of participants. The
initiator organizes and leads the bidding process. He publishes the bid to the
participants and receives various proposals. At every iteration, the initiator can
accept an offer, raise the bid, or cancel the process.

The Mediation patterns – such as monitor, broker, matchmaker, mediator,
embassy, or wrapper – feature intermediary agents that help other agents to
reach an agreement on an exchange of services. For instance, in the Broker
pattern, the broker agent is an arbiter and intermediary that requests services
from a provider to satisfy the request of a consumer.

Figure 5.6 shows a possible use of the patterns in the e-business system
shown in Figure 5.5. In particular, it shows how to realize the dependencies
Manage catalogue browsing, Update Information, and Product Information
from the point of view of the Store Front. The Store Front and the dependencies
are decomposed into a combination of social patterns involving agents, pattern
agents, subgoals and subtasks.

www.manaraa.com

102 Methodologies and Software Engineering for Agent Systems

The booking pattern is applied between the Shopping Cart and the Infor-
mation Broker to reserve available items. The broker pattern is applied to the
Information Broker, which satisfies the Shopping Cart ’s requests of informa-
tion by accessing the Product Database. The Source Matchmaker applies the
matchmaker pattern to locate the appropriate source for the Information Bro-
ker, and the monitor pattern is used to check any possible change in the Product
Database. Finally, the mediator pattern is applied to dispatch the interactions
between the Information Broker, the Source Matchmaker, and the Wrapper,
while the wrapper pattern makes the interaction between the Information Bro-
ker and the Product Database possible.

5. Goal Models

Traditional goal analysis consists of decomposing goals into subgoals by
means of an AND- or OR-decomposition. If goal G is AND-decomposed (re-
spectively, OR-decomposed) into subgoals then all (at least
one) of the subgoals must be satisfied for the goal G to be satisfied. Given a
goal model consisting of goals and AND/OR relationships among them, and a
set of initial labels for some nodes of the graph (S for Satisfied, D for Denied)
there is a simple label propagation algorithm which can generate labels for all
nodes of the graph (Nilsson, 1971).

Unfortunately, this simple framework for modeling and analyzing goals will
not work for many domains where goals cannot be formally defined, and the
relationships among them cannot be captured by semantically well-defined re-
lations such as AND/OR ones. For example, a goal such as “Highly reliable
system” has no formal definition which prescribes its meaning, though one
may want to define necessary conditions for its fulfillment. Moreover, such
a goal may be related to other goals, such as “Thoroughly debugged system,”
“Thoroughly tested system” in the sense that the latter obviously contribute to
the satisfaction of the former, but this contribution is partial and qualitative. In
other words, if the latter goals are satisfied, they certainly contribute towards
the satisfaction of the former goal, but do not guarantee it. The framework
will also not work in situations where there are contradictory contributions to
a goal. For instance, we may want to allow for multiple decompositions of a
goal G into sets of subgoals, where some decompositions suggest satisfaction
of G while others suggest denial.

Tropos proposes a formal model for goals that can cope with qualitative re-
lationships and inconsistencies among goals. Suppose we are modeling the
strategic objectives of a US car manufacturer, such as Ford or GM. Exam-
ples of such objectives are increase return on investment or increase customer
loyalty. Objectives can be represented as goals, and can be analyzed using
goal relationships such as AND, OR, “+” and “–”. In addition, we will use

www.manaraa.com

The Tropos Methodology 103

Figure 5.7. A partial goal model for GM

“++” (respectively “– –”) a binary goal relationship such that if
then satisfaction of G implies satisfaction (denial) of

For instance, increase return on investment may be AND-decomposed into
increase sales volume and increase profit per vehicle. Likewise, increase sales
volume might be OR-decomposed into increase consumer appeal and expand
markets. This decomposition and refinement of goals can continue until we
have goals that are tangible (i.e., someone can satisfy them through an appro-
priate course of action) and/or observable (i.e., they can be confirmed satis-
fied/denied by simply observing the application domain).

For vaguely stated goals, such as increase customer loyalty we may want
to simply model other relevant goals, such as improve car quality, improve
car services and relate them through “+” and “–” relationships, as shown
in Figure 5.7. These goals may influence positively or negatively some of the
goals that have already been introduced during the analysis of the goal increase

www.manaraa.com

104 Methodologies and Software Engineering for Agent Systems

return on investment. Such lateral goal relationships may introduce cycles in
our goal models.

Examples of observable goals are Yen rises, gas prices rise etc. When such
a goal is satisfied, we will call it an event (the kind of event you may read about
in a news story) and represent it in our graphical notation as a rectangle (see
lower portion of Figure 5.7).

Figure 5.7 shows a partial and fictitious goal model for GM focusing on
the goal increase return of investment. In order to increase return of invest-
ment, GM has to satisfy both goals increase sales and increase profit per ve-
hicle. In turn, increase sales volume is OR-decomposed into increase con-
sumer appeal and expand markets, while the goal increase profit per vehicle
is OR-decomposed into increase sales price, lower production costs, increase
foreign earnings, and increase high margin sales. Additional decompositions
are shown in the figure. For instance, the goal increase consumer appeal can
be satisfied by satisfying lower environment impact, trying to lower purchase
costs, or reducing the vehicle operating costs (reduce operating costs).

The graph shows also lateral relationships among goals. For example, the
goal increase customer loyalty has positive (+) contributions from goals lower
environment impact, improve car quality and improve car services, while it has
a negative (–) contribution from increase sales price. The root goal increase
return on investment (GM) is also related with goals concerning others auto
manufacturer, such as Toyota and VW. In particular, if GM increases sales,
then Toyota loses a share of the North American market; if Toyota increases
sales increase Toyota sales), it does so at the expense of VW; finally, if VW
increases sales (increase VW sales), it does so at the expense of GM.

So far, we have assumed that every goal relationship treats S and D in a dual
fashion. For instance, if we have then if G is satisfied, is partially
satisfied, and (dually) if G is denied is partially denied. Note however,
that sometimes a goal relationship only applies for S (or D). In particular, the
– – contribution from increase GM sales to increase Toyota sales only applies
when increase GM sales is satisfied (if GM hasn’t increased sales, this does
not mean that Toyota has). To capture this kind of relationship, we introduce

(see also Figure 5.7).
In (Giorgini et al., 2002) we have presented an axiomatization of a qualita-

tive and a quantitative goal model. We report here the qualitative formalization.
We consider sets of goal nodes and of relations over

them, including the (n + 1)-ary relations and, or and the binary relations
+, –, ++, – – .We briefly recall the

intuitive meaning of these relations: [resp. means that
if is satisfied, then there is some [resp. a full] evidence that is satisfied,

but if is denied, then nothing is said about the denial of

www.manaraa.com

The Tropos Methodology 105

[resp. means that if is satisfied, then there is some [resp.
a full] evidence that is denied, but if is denied, then nothing is said
about the satisfaction of The meaning of is dual
w.r.t. respectively (by “dual” we mean that we invert
satisfiability with deniability). The relations +, –, ++, – – are such that
each is a shorthand for the combination of the two corresponding
relationships and (We call the first kind of relations
symmetric and the latter two asymmetric.)

Let denote goal labels. We introduce four distinct predicates
over goals, FS(G), DG and PS(G), PD(G), meaning respectively that there is
(at least) full evidence that goal G is satisfied and that G is denied, and that
there is at least partial evidence that G is satisfied and that G is denied.

To formalize the propagation of satisfiability and deniability evidence in a
goal graph, we introduce in (Giorgini et al., 2002) a set of axioms stating: full
satisfiability and deniability imply partial satisfiability and deniability, respec-
tively; for an AND relation, full and partial satisfiability of the target node
require respectively the full and partial satisfiability of all the source nodes;
satisfiability (but not the full satisfiability) propagates through a relation.
Thus, an AND relation propagates the minimum satisfiability value (and the
maximum deniability one), while a relation propagates at most a partial
satisfiability value. Dual axioms hold for the other relations.

Given a goal graph, we can perform two different kind of reasoning: Top-
Down and Bottom-Up. In Top-Down reasoning, we concentrate on a set of
root goals with a desired assignment (e.g., satisfy all of them), and we want
to find an assignment to the leaf nodes consistent with the desired assignment.
In other words, we want to find an initial assignment to the leaf nodes that
can be propagate the desiderata assignment to the root nodes. In Bottom-Up
reasoning, we concentrate on a set of leaf nodes with an initial assignment,
and propagate these assignments upwards to find out their implications for
root-level goals.

In (Giorgini et al., 2002) we have proposed sound and complete algorithms
for qualitative and quantitative Top-Down reasoning with goal models. In par-
ticular, given a goal model and labels for some of the goals, our algorithms
propagate these labels upwards. If the graph contains loops, propagation pro-
ceeds until a fixpoint is reached. We have also developed algorithms for quali-
tative and quantitative Bottom-Up reasoning.

6. Conclusions
We have presented an overview of the Tropos methodology. The basic

assumption that distinguishes our work from others in Requirements Engi-
neering is that actors and goals are used as fundamental concepts for mod-

www.manaraa.com

106 Methodologies and Software Engineering for Agent Systems

eling and analysis during all phases of software development, not just early
requirements. The distinguishing feature of Tropos compared to other agent-
oriented software development methodologies is its emphasis on requirements
analysis. Further information about the Tropos project can be found at http:
//www.troposproject.org.

The methodology has only been applied so far to several modest-size case
studies, e.g., (Castro et al., 2002), with encouraging results. Anyway, it still
lacks tools that support the transition between different phases. Another lim-
itation of the methodology is that it has not been used for the development of
full-fledged MAS.

Of course, much remains to be done to further refine and evaluate the pro-
posed methodology. We are currently working on several open problems, such
as the development of other formal analysis techniques for Tropos models, and
the development of tools that support design activities during different phases
of the methodology.

Acknowledgements

We thank all contributors to the Tropos project – in Trento, Toronto and
elsewhere – for useful comments, discussions and feedback. This research has
been partly supported by the Italian MIUR-FIRB Project, RBNE0195K5 - AS-
TRO and by the Natural Sciences and Engineering Research Council (NSERC)
of Canada.

www.manaraa.com

Chapter 6

THE MASE METHODOLOGY

Scott A. DeLoach

Abstract MaSE provides a detailed approach to the analysis and design of MAS. MaSE
combines several established models into a comprehensive methodology and
provides a set of transformation steps that shows how to derive new models
from the existing models. Thus MaSE guides the developer in the analysis and
design process. Future work on MaSE will focus on specializing it for use in
adaptive multiagent and cooperative robotic systems based on an organizational
theoretic approach. We are currently developing an organizational model that
will provide the knowledge required for a team of software or hardware agents
to automatically adapt to changes in their environment and to organize and re-
organize to accomplish team goals. Much of the information needed in this
organizational model – goals, roles, and agents – is already captured in MaSE.
However, we will have to extend MaSE analysis to capture more detail on roles,
including the capabilities required to play roles.

1. Introduction

This chapter provides an introduction to Multiagent Systems Engineering
(MaSE), which is a full-lifecycle methodology for analyzing, designing, and
developing heterogeneous MAS. To accomplish this, MaSE uses a number of
graphically based models derived from standard UML models to describe the
types of agents in a system and their interfaces to other agents, as well as an
architecture-independent detailed definition of the internal agent design. The
primary focus of MaSE is to guide a designer from an initial set of requirements
through the analysis, design, and implementation of a working MAS.

MaSE views MAS as a further abstraction of the object-oriented paradigm
where agents are specialized objects. Instead of simple objects, with methods
that can be invoked by other objects, agents coordinate with each other via
conversations and act proactively to accomplish individual and system-wide
goals. Therefore, MaSE builds upon well-founded object-oriented techniques
and applies them to the specification and design of MAS.

www.manaraa.com

108 Methodologies and Software Engineering for Agent Systems

MaSE is also the basis for the agentTool development system. agentTool can
be downloaded free from the agentTool Web page at http://www.cis.ksu.

edu/~sdeloach. agentTool is a graphically based, fully interactive software
engineering tool, which fully supports each step of MaSE analysis and design.
agentTool also supports automatic verification of inter-agent communications,
semi-automated design, and code generation for multiple MAS frameworks.
MaSE and agentTool are both independent of any particular agent architecture,
programming language, or communication framework.

2. Methodology

The MaSE methodology is a specialization of more traditional software en-
gineering methodologies. The general operation of MaSE follows the phases
and steps shown below and uses the associated models.

Phases
1. Analysis Phase

a. Capturing Goals
b. Applying Use Cases
c. Refining Roles

2. Design Phase
a. Creating Agent Classes
b. Constructing Conversations
c. Assembling Agent Classes
d. System Design

The MaSE Analysis phase consists of three steps: Capturing Goals, Apply-
ing Use Cases, and Refining Roles. The Design phase has four steps: Creating
Agent Classes, Constructing Conversations, Assembling Agent Classes, and
System Design. While presented sequentially, the methodology is, in prac-
tice, iterative. The intent is that the designer is free to move between steps
and phases such that with each successive pass, additional detail is added and,
eventually, a complete and consistent system design is produced.

One strength of MaSE is the ability to track changes during the whole pro-
cess. Every object created during the analysis and design phases can be traced
forward or backward through the different steps to other related objects. For
instance, a goal derived in the Capturing Goals step can be traced to a specific
role, task, and agent class. Likewise, an agent class can be traced back through
tasks and roles to the system level goal it was designed to satisfy.

3. Analysis Phase

Models

Goal Hierarchy
Use Cases, Sequence Diagrams
Concurrent Tasks, Role Model

Agent Class Diagrams
Conversation Diagrams
Agent Architecture Diagrams
Deployment Diagrams

The MaSE Analysis phase produces a set of roles and tasks, which describe
how a system satisfies its overall goals. Goals are an abstraction of the detailed

www.manaraa.com

The MaSE Methodology 109

requirements and are achieved by roles. Typically, a system has an overall goal
and a set of sub-goals that must be achieved to reach the system goal. Goals
are used in MaSE because they capture what the system is trying to achieve
and tend to be more stable over time than functions, processes, or information
structures.

A role describes an entity that performs some function within the system.
In MaSE, each role is responsible for achieving, or helping to achieve specific
system goals or sub-goals. MaSE roles are analogous to roles played by actors
in a play or by members of a typical company structure. The company (which
corresponds to system) has roles such as “president,” “vice-president,” and
“mail clerk” that have specific responsibilities, rights and relationships defined
in order to meet the overall company goal.

The overall approach in the MaSE Analysis phase is straightforward: define
system goals from a set of requirements and then define the roles necessary to
meet those goals. To help in defining roles to meet specific goals, MaSE uses
Use Cases and Sequence Diagrams. The individual steps of the Analysis phase
of Capturing Goals, Applying Use Cases, and Refining Roles are presented
next.

3.1 Capturing Goals
The first step in the MaSE Analysis phase is Capturing Goals, whose pur-

pose is to transform an initial system specification into set of structured sys-
tem goals. The initial system context, the starting point for MaSE analysis, is
usually a software requirement specification with a well-defined set of require-
ments. These requirements tell the analyst the services that the system must
provide and how the system should or should not behave based on inputs to
the system and its current state. There are two sub-steps in Capturing Goals:
identifying goals and structuring goals. First, goals must be identified from the
initial system context. Next, the goals are analyzed and put into a hierarchical
form. Each of these sub-steps is described in detail below.

Identifying Goals. The goal of the step named Identifying Goals is to
capture the essence of an initial set of requirements. This process begins by
extracting scenarios from the initial specification and describing the goal of
that scenario.

Throughout this chapter, we will use the conference management system
example, which has become fairly common in AOSE circles. The conference
management system is a MAS supporting the management of various sized
international conferences that require the coordination of several individuals
and groups. We define the basic system requirements below.

www.manaraa.com

110 Methodologies and Software Engineering for Agent Systems

Authors should be able to submit their papers electronically to a conference paper
database system. During the submission phase, authors should be notified of paper
receipt and given a paper submission number.

After the deadline for submissions has passed, the papers will be divided among the
program committee (PC), who has to review the papers themselves or by contacting
referees and asking them to review a number of the papers.

Reviewers should be able to get papers directly from the central database and submit
their reviews to a central collection point.

After the reviews are complete, a decision on accepting or rejecting each paper must be
made.

After the decisions are made, authors are notified of the decisions and are asked to
produce a final version of their paper if it was accepted.

The conference management system is an organization whose membership
(authors, reviewers, decision makers, review collectors, etc.) may change dur-
ing the process. In addition, since each agent is associated with a human, it
is easy to imagine that these agents could be coerced into displaying oppor-
tunistic behaviors that would benefit their owner to the detriment to the overall
system. Such behaviors could include reviewing ones own paper or inequitable
allocation of work, etc.

An example of the goals derived from these requirements is shown below.
Notice that all the details on how to perform system functions are not included
as goals.

1. Collect papers
2. Distribute papers
3. Assign papers to PC members
4. Assign papers to reviewers
5. Submit reviews
6. Collect reviews
7. Select/reject papers
8. Inform authors

Goals embody the critical system requirements; therefore, an analyst should
specify goals as abstractly as possible without losing the spirit of the require-
ment. This abstraction can be performed by removing detailed information
when specifying goals. For example, to “Inform authors” is a goal, the details
on how to actually inform them may change over time and are not.

Once the goals have been captured, they provide the foundation for the anal-
ysis model; all roles and tasks defined in later steps must support one of the
goals. If, later in the analysis, the analyst discovers roles or tasks that do not
support an existing system goal, either the roles and tasks are superfluous or a
new goal has been discovered.

Structuring Goals. The final step in Capturing Goals is structuring the
goals into a Goal Hierarchy Diagram, as shown in Figure 6.1. A Goal Hierar-
chy Diagram is a directed, acyclic graph where the nodes represent goals and

www.manaraa.com

The MaSE Methodology 111

the arcs define a sub-goal relationship. A goal hierarchy is not necessarily a
tree as a goal may be a sub-goal of more than one parent goal.

To develop the goal hierarchy, the analyst studies the goals for their impor-
tance and inter-relationships. Even though goals have been captured, they are
of various importance, size, and level of detail. The Goal Hierarchy Diagram
preserves such relationships, and divides goals into sub-goals that are easier to
manage and understand.

Figure 6.1. Example Goal Hierarchy Diagram

which is placed at the top of the Goal Hierarchy Diagram. However, it is often
the case, as in our example above, that a single system goal cannot be directly
extracted from the basic requirements. In this case, the highest-level goals
are summarized to create an overall system, in our case “Produce conference
papers.” Once a basic goal hierarchy is in place, goals may be decomposed into
new sub-goals. Each sub-goal must support its parent goal in the hierarchy and
defines what must done to accomplish the parent goal.

Although similar, Goal decomposition is not simply “functional decompo-
sition.” Goals describe what, while functions describe how. Instead of a set of
goals describing what the system will do, functional decomposition typically
results in a set of steps prescribing how the system will do it. For example,
functional steps for implementing the goal “Assign papers to PC members”
might be to (i) group papers based on similar keywords; and (ii) select PC
members whose expertise matches the paper groups. However, the appropri-
ate sub-goals would be to: (i) “Partition papers”; and (ii) “Assign reviewers.”
The fact that the papers are partitioned and PC members are assigned to papers
are goals, how we divide the papers or on what basis we assign reviewers are
immaterial at this point and will be decided on by the agents responsible for
those goals. Goal decomposition continues until any further decomposition

The first step in building is to identify the overall system goal,

www.manaraa.com

112 Methodologies and Software Engineering for Agent Systems

would result in functions instead of a goals (i.e., the analyst prescribes how a
goal should be accomplished).

There are four special types of goals in a Goal Hierarchy Diagram. These
are: summary, partitioned, combined, and non-functional. Goals can have at-
tributes of more than one special goal type; however, they do not necessarily
have to be one of these types at all.

A summary goal is derived from a set of existing “peer” goals to provide a
common parent goal. This often happens at the highest levels of the hierarchy
as was the case in the overall system goal in our example.

Some goals do not functionally support the overall system goal, but are
critical to system operation. These non-functional goals are often derived from
non-functional requirements such as reliability or response times. For example,
if a system must be able to find resources dynamically, a goal to facilitate
locating dynamic resources may be required. In this case, another “branch” of
the Goal Hierarchy Diagram can be created and placed under an overall system
level goal.

There are often a number of sub-goals in a hierarchy that are identical or
very similar that can be grouped into a combined goal. This often happens
when the same basic goal is a sub-goal of two different goals. In this case, the
combined goal becomes a sub-goal of both the goals.

A partitioned goal is a goal with a set of sub-goals that, when taken collec-
tively, effectively meet that goal. While this is always true of summary goals,
it may be true of any goals with a set of sub-goals. By defining a goal as “par-
titioned,” it frees the analyst from specifically accounting for it in the rest of
the analysis process. Partitioned goals are annotated in a Goal Hierarchy Dia-
gram using a gray goal box instead of a clear box (e.g., goals 1, 1.1, and 1.2 in
Figure 6.1).

At the conclusion of Capturing Goals, system goals have been captured and
structured into a Goal Hierarchy Diagram. The analyst can now move to the
second Analysis step, Applying Use Cases, where the initial look at roles and
communication paths takes place.

3.2 Applying Use Cases

The Applying Uses Cases step is crucial in translating goals into roles and
associated tasks. Use cases are drawn from the system requirements and de-
scribe sequences of events that define desired system behavior; they are exam-
ples of how the system should behave. To help determine the actual communi-
cations in a MAS, the use cases are converted into Sequence Diagrams. MaSE
Sequence Diagrams are similar to standard UML sequence diagrams except
that they are used to depict sequences of events between roles and to define the
communications between the agents that will be playing those roles. The roles

www.manaraa.com

The MaSE Methodology 113

identified here form the initial set of roles used in the next step while the events
are also used later to define tasks and conversations.

The first step in Applying Use Cases is to extract Use Cases from the initial
system context, which should include both positive and negative Use Cases. A
positive Use Case describes what should happen during normal system opera-
tion. However, a negative Use Case defines a breakdown or error. While Use
Cases cannot be used to capture every possible requirement, they are an aid
in deriving communication paths and roles. Cross checking the final analysis
against the set of derived goals and Use Cases provides a redundant method
for deriving system behavior.

3.3 Refining Roles
The purpose of the Refining Roles step is to transform the Goal Hierarchy

Diagram and Sequence Diagrams into roles and their associated tasks, which
are forms more suitable for designing MAS. Roles form the foundation for
agent classes and correspond to system goals during the Design phase. It is
our contention that system goals will be satisfied if every goal is associated
with a role and every role is played by an agent class.

The general case transformation of goals to roles is one-to-one, with each
goal mapping to a role. However, there are situations where it is useful to
have a single role be responsible for multiple goals, including convenience or
efficiency. One mapping of the goals from our previous example to a set of
roles is shown below.

PaperDB
Partitioner
Assigner
Reviewer
Collector
DecisionMaker

(1.1.1, 1.1.2, 1.1.2.1)
(1.2.1)
(1.2.2)
(1.3.1)
(1.4)
(1.5, 1.5.1)

Due to the simplicity of our example, we mapped goals to individual roles
with a two exceptions. Goals, 1, 1.1, 1.2, and 1.3 were not mapped to roles
since they were partitioned. However, the PaperDB role was assigned all the
goals associated with goal 1.1, namely 1.1.1, 1.1.2, and 1.1.2.1. In addition,
the DecisionMaker role was assigned both 1.5 and 1.5.1, which are closely
related.

Related goals can often be combined into a single role. For example, the
“collect papers,” “distribute papers,” and “distribute abstracts” goals are com-
bined into the single PaperDB role since they are closely related and require
the same type of access techniques. While combining goals makes the role
more complex, it may simplify the overall design.

In general, interfacing with external or internal resources requires a separate
role to act as an interface to the rest of the system. We generally consider

www.manaraa.com

114 Methodologies and Software Engineering for Agent Systems

a human user as an external resource. In MaSE we do not explicitly model
human-computer interaction; we create a specific role to encapsulate the user
interface. In this way, we can define the ways in which a user can interface
with the system without defining the user interface itself. Other resources such
as databases, files or legacy systems may also require their own interface role.
In our example, the Author role does not satisfy any system goals as it is an
interface to the user; however, without it, the system is not needed.

Role definitions are captured in a MaSE Role Model as shown in Figure 6.2,
which includes information on interactions between role tasks and is more
complex than traditional role models, as described in (Kendall, 1998). Roles
are denoted by rectangles, while a role’s tasks are denoted by ovals attached
to the role. Lines between tasks denote communications protocols with the ar-
row pointing from the initiator to the respondent. Solid lines indicate external
communications while dashed lines denote communication between tasks in
the same role instance.

Figure 6.2. MaSE Role Model

The tasks are generally derived from the goals for which a task is respon-
sible. For instance, the PaperDB role is responsible for attaining goals 1.1.1,
1.1.2, and 1.1.2.1. Therefore, to accomplish this goal, the role must be able
to collect papers and distribute them and their abstracts. Therefore, we cre-
ated three interrelated tasks: Collect Papers, Distrib Papers, and GetAbstracts.

www.manaraa.com

The MaSE Methodology 115

While we could have specified all three goals in a single task, partitioning them
in this was is modular and effectively encapsulates the actual approach used.

Roles should not share or duplicate tasks. Sharing of tasks is a sign of
improper role decomposition. Shared tasks should be placed in a separate role,
which can be combined into various agent classes in the Design phase.

Concurrent Task Model. After roles are created and tasks identified, the
developer captures the role’s behavior by defining the details of the individual
tasks. A role may consist of multiple tasks that, when taken together, define the
required behavior of that role. Each task executes in its own thread of control,
but may communicate with each other. Concurrent tasks are defined in Con-
current Task Models (see Figure 6.3) and are specified as finite state automata,
which consist of states and transitions. States encompass the processing that
goes on internal to the agent while transitions allow communication between
agents or between tasks.

Figure 6.3. Concurrent Task Diagram

A transition consists of a source state, destination state, trigger, guard condi-
tion, and transmissions and uses the syntax trigger [guard] ^ transmission(s).
Multiple transmissions may be separated with a semicolon (;), however, no
ordering is implied. Generally, events on triggers or transmissions are to be
associated with a task within the same role, thus allowing internal task coor-
dination. However, two special events, send and receive, are used to indicate
messages sent between agents. The send event (denoted send(message, agent))
is used to send a message to another agent while the receive event (denoted as
receive(message, agent)) signifies the receipt of a message. The message is
defined as a performative, which describes the intent of the message, along
with a set of parameters that are the content of the message (i.e., performa-

www.manaraa.com

116 Methodologies and Software Engineering for Agent Systems

tive(p1 ... pn) where p1 ...pn denotes n parameters). It is also possible to send
a message to a group of agents via multicasting using a < group-name > versus
a single agent name.

States may contain activities that represent internal reasoning, reading a per-
cept from sensors, or performing actions via actuators. Multiple activities may
be included in a single state and are performed in an uninterruptable sequence.
Once in a state, the task remains there until the activity sequence is complete.
The variables used in activity and events definitions are visible within the task,
but not outside of the task or within activities. All messages sent between roles
and events sent between tasks are queued to ensure that all messages are re-
ceived even if the agent or task is not in the appropriate state to handle the
message or event immediately.

Concurrent tasks have predefined activities to deal with mobility and time.
The move activity specifies that the agent is to move to a new address and
returns a Boolean value (Boolean = move(location)), which states whether the
move actually occurred. The agent can reason over this value and deal with it
accordingly.

To reason about time, the Concurrent Task Model provides a built in timer
activity. An agent can define a timer using t = setTimer (time), the setTimer
activity. The setTimer activity takes a time as input and returns a tinier that
will timeout in exactly the time specified. The timer that can then be tested via
the timeout activity, which returns a Boolean value, to see if it has “timed out”
(Boolean = timeout(t)).

Once a transition is enabled, it is executed instantaneously. If multiple tran-
sitions are enabled, the following priority scheme is used.

Transitions whose triggers are internal events.

Transitions whose transmissions are internal events.

Transitions whose trigger receives a message from another role.

Transitions whose transmissions are a message to another role.

Transitions with valid guard conditions only.

1

2

3

4

5

Figure 6.3 shows the Assign to Reviewers task for the Assigner role. The
task is initiated upon receipt of a makeAssigns message from a Partitioner
agent, which includes a list of papers to be assigned. After the message is
received, the task goes to the MakeAssignments state where it computes a list
of reviewers for the papers (a process that is as yet undefined). Once these
list is defined, the task transitions to the RequestReviews state where the top
reviewer/papers tuple is taken off the list. A reviewPapers message is then sent
to the reviewer effectively requesting that the agent provide a review for the

www.manaraa.com

The MaSE Methodology 117

associated papers, which is denoted by the paps parameter. The task remains
in the Wait state until a reply from the reviewer is received. If the reviewer
declines (via a decline message), the task returns to the MakeAssignment state
where it computes a new list of reviewers for the remaining papers. If the
reviewer accepts the request via an accept message, the task transitions to the
updatePaperList state where the list of papers is updated by adding the name
of the reviewer to the papers that they will be reviewing. If the list is not
empty, the task returns to the RequestReviews state to make a request of the
next reviewer on the list. If the size of the reviewers list is empty, the task ends
by sending an assignmentComplete message to the Partitioner agent.

3.4 Analysis Phase Summary

Once the concurrent tasks of each role are defined, the Analysis phase is
complete. The MaSE Analysis phase is summarized as follows:

Identify goals and structure them into a Goal Hierarchy Diagram.

Identify Use Cases and create Sequence Diagrams to help identify roles
and communications paths.

Transform goals into a set of roles.

1

2

3

(a)

(b)

Create a Role Model to capture roles and their tasks.

Define role behavior using Concurrent Task Models for each task.

4. Design Phase

There are four steps to the designing a system with MaSE. The first step is
Creating Agent Classes, in which the designer assigns roles to specific agent
types. In the second step, Constructing Conversations, the conversations be-
tween agent classes are defined while in the third step, Assembling Agents
Classes, the internal architecture and reasoning processes of the agent classes
are designed. Finally, in the last step, System Design, the designer defines the
number and location of agents in the deployed system.

4.1 Creating Agent Classes

In the Creating Agent Classes step, agent classes are created from the roles
defined in the Analysis phase. This phase produces an Agent Class Diagram,
which depicts the overall agent system organization consisting of agent classes
and the conversations between them. An agent class is a template for a type
of agent in the system and are defined in terms of the roles they will play and
the conversations in which they may participate. If roles are the foundation
of MAS design, then agent classes are the bricks used to implement MAS.

www.manaraa.com

118 Methodologies and Software Engineering for Agent Systems

These two different abstractions manipulate two distinct system dimensions.
Roles allow us to allocate system goals while agent classes allow us to consider
communications and other resource usage.

The first step is to assign roles to each agent class. If assigned multiple
roles, agent classes may play them concurrently or sequentially. To ensure
that system goals are accounted for, each role must be assigned to at least one
agent class. The analyst can easily change the organization and allocation of
roles among agent classes during design, since roles can be manipulated mod-
ularly. This allows consideration of various design issues, which are based on
standard software engineering concepts such as functional, communicational,
procedural, or temporal cohesion.

During this step, we also identify the conversations in which different agent
classes must participate. An agent’s conversations are derived from the exter-
nal communications of the agent’s assigned roles. For instance, if roles A and
B communicate with each other, then, if agent 1 plays role A and agent 2 plays
role B, then there must be a conversation between agent 1 and agent 2.

The agent classes and conversations are documented via Agent Class Dia-
grams, which are similar to object-oriented class diagrams with two main dif-
ferences. First, agent classes are defined by the roles they play, not by attributes
and methods. Second, all relationships between agent classes are captured as
conversations. A sample Agent Class Diagram is shown in Figure 6.4. The
boxes in Figure 6.4 denote agent classes and contain the class name and the set
of roles each agent plays. Lines with arrows identify conversations and point
from the conversation initiator to the responder. In this design, the PC Chair
agent plays the Partitioner, Collector, and Decision Maker roles while the PC
Member agent plays both the Assigner and Reviewer roles. Outside of Au-
thors, the only other agent is the DB agent, which provides an interface to the
database containing papers, abstracts, and author information.

Figure 6.4. Agent Class Diagram

The Agent Class Diagram is the first design object in MaSE that depicts the
entire MAS in its final form. If we have carefully followed MaSE to this point,
the system represented by the Agent Class Diagram will support the goals and
Use Cases identified in the Analysis phase. Of particular importance at this

www.manaraa.com

The MaSE Methodology 119

point is the system organization – the way that the agent classes are connected
with conversations.

4.2 Constructing Conversations

Constructing Conversations is the next MaSE Design phase step. So far, the
designer has only identified conversations; the goal of this step is to define the
details of those conversations based on the internal details of concurrent tasks.

A conversation defines a coordination protocol between two agents and
is documented using two Communication Class Diagrams, one each for the
initiator and responder. A Communication Class Diagram, as shown in Fig-
ure 6.5, is similar to a Concurrent Task Model and defines the conversation
states of the two participant agent classes. The initiator begins the conversa-
tion by sending the first message. When the other agent receives the message,
it compares it to its active conversations. If it finds a match, the agent tran-
sitions the appropriate conversation to a new state and performs any required
actions or activities from either the transition or the new state. Otherwise, the
agent assumes the message is a new conversation request and compares it to
the conversations it can participate in with the sending agent. If the agent finds
a match, it begins a new conversation.

As stated above, communication class diagrams use states and transitions
to define the inter-agent communication. Transitions use the following syntax:
rec-mess(args1) [cond] / action ^ trans-mess(args2). This states that if the
message rec-mess is received with the arguments args1 and the condition cond
holds, then the method action is called and the message trans-mess is sent with
arguments args2.

The transition from the start state in Figure 6.5 (left) indicates that it is the
initiator half of a conversation, since it transmits a message. The conversation
describes how the PCChair agent (the conversation initiator) sends a message
to the Author agent notifying it of the acceptance. At this point, the PCChair
enters a wait state. If the Author can still attend the conference, it sends an
accept message (Figure 6.5 right) and the conversation is completed. If the
Author cannot attend the conference, it returns a decline message. After re-
ceiving a decline message, the PCChair performs the updatePapers activity to
update its list of attendees.

As discussed above, the designer establishes an agent’s set of conversations
by the roles it has been assigned. In the same way, the conversation design is
derived from the concurrent tasks associated with those roles. Since a concur-
rent task integrates inter- and intra-role interactions, it provides the information
required to define conversations. Each task that defines external communica-
tion creates one or more conversations. If all task communication is with a
single role, or set of roles that have all been mapped to a single agent class, the

www.manaraa.com

120 Methodologies and Software Engineering for Agent Systems

Figure 6.5. Inform authors conversation initiator and responder

task can be mapped directly to a single conversation. More generally, however,
concurrent tasks spawn multiple conversations.

Once the information from Concurrent Task Models has been integrated
into conversations, the designer must ensure that other factors, such as robust-
ness and fault tolerance, are taken into account. For instance, if a particular
agent sends a message to another agent requesting an action be performed, the
conversation should be able to handle the other agent’s refusal or inability to
complete the request.

4.3 Assembling Agents

Agent class internals are designed during the step Assembling Agents, that
includes two sub-steps: defining the architecture of agents and defining the ar-
chitecture’s components. Designers have the choice of either designing their
own architecture or using predefined architectures such as BDI. Likewise, a
designer may use predefined components or develop them from scratch. Com-
ponents consist of a set of attributes, methods, and possibly a sub-architecture.

An example of an Agent Architecture Diagram is shown in Figure 6.6. Ar-
chitectural components (denoted by boxes) are connected to either inner- or
outer-agent connectors. Inner-agent connectors (thin arrows) define visibility
between components while outer-agent connectors (thick dashed arrows) de-
fine external connections to resources such as agents, sensors and effectors,
databases, and data stores. Internal component behavior may be represented
by formal operation definitions or state-diagrams. The architecture and in-
ternal definition of the components must be consistent with the conversations
defined in the previous step. At a minimum, this requires that each action or
activity defined in a Communication Class Diagram be defined as an operation
in one of the internal components. The internal component state diagrams and
operations can also be used to initiate and coordinate various conversations.

www.manaraa.com

The MaSE Methodology 121

Figure 6.6. PCChair Agent Architecture

The PCChair agent architecture is shown in Figure 6.6. The PCChair agent
has three components, which basically implement a pipeline architecture. The
Partitioner component receives abstracts and uses the partitionPapers method
to break the list into sets based on content. The Partitioner then calls the collec-
tReviews method of the Collector component, which waits and collects all the
reviews from the reviewer. Once all papers have been reviewed, the Collector
component calls the selectPapers method of the DecisionMaker component,
who selects the best papers and notifies the authors.

4.4 System Design

System Design is the final step of the MaSE methodology and uses Deploy-
ment Diagrams to show the numbers, types, and locations of agent instances
in a system. System design is actually the simplest step of MaSE, as most of
the work was done in previous steps. Figure 6.7 shows a Deployment Diagram
for the conference management system. The three-dimensional boxes repre-
sent agents while the connecting lines represent actual conversations between
agents. The agents are identified by their class name in the form of instance-
name : class. Dashed boxes define physical computational platforms.

A designer should define the system deployment before implementation
since agents typically require Deployment Diagram information, such as a
hostname or address, for communications. Deployment Diagrams also offer
an opportunity for the designer to tune the system to its environment to max-
imize available processing power and network bandwidth. In some cases, the
designer may specify a particular number of agents in the system or the specific
computers on which certain agents must reside. The designer should also con-
sider the communication and processing requirements when assigning agents
to computers. To reduce communications overhead, a designer may choose
to deploy agents on the same machine. However, too many agents on a single
machine destroys the advantages of distribution gained by using the multiagent
paradigm. Another strength of MaSE is that a designer can make these mod-

www.manaraa.com

122 Methodologies and Software Engineering for Agent Systems

Figure 6.7. Deployment Diagram

ifications after designing the system organization, thus generating a variety of
system configurations.

4.5 Design Phase Summary

Once the Deployment Diagrams are finished, the Design phase is complete.
The MaSE Design Phase can be summarized as follows:

Assign roles to agent classes and identify conversations.

Construct conversations, adding messages/states for robustness.

Define internal agent architectures.

Define the final system structure using Deployment Diagrams.

1

2

3

4

5. agentTool

The agentTool system (DeLoach and Wood, 2001) has been developed to
support and enforce MaSE. Currently agentTool implements all seven steps of
MaSE as well as automated design support. The agentTool user interface is
shown in Figure 6.8. The menus across the top allow access to several sys-
tem functions, including analysis to design transformations (Sparkman et al.,
2001), conversation verification (Lacey et al., 2000), and code generation. The
buttons on the left add specific items to the diagrams while a text window dis-
plays system messages. The different MaSE diagrams are accessed via the
tabbed panels across the top of the main window. When a MaSE diagram is
selected, the designer can manipulate it graphically in the window. Each panel

www.manaraa.com

The MaSE Methodology 123

has different types of objects and text that can be placed on them. Selecting an
object in the window enables other related diagrams to become accessible.

Figure 6.8. agentTool

While the designer may use existing architectures or design a new one from
scratch, agentTool also provides the ability to semi-automatically derive the
agent architecture directly from the roles and tasks defined in the analysis
phase. This approach has the advantage of providing a direct mapping from
analysis to design. Each task from each role played by an agent defines a com-
ponent in the agent class. The concurrent task itself is transformed into a com-
bination of the component’s internal state diagram and a set of conversations.
Activities identified in the concurrent task become methods of the component.

The transformation is actually a sequence of transformations that incre-
mentally change roles and tasks into agent classes, components, and conver-
sations. Before beginning the analysis-to-design transformation process, the
Role Model and its set of concurrent tasks, and the assignment of roles to
agent classes must exist. During the first stage of the transformation process,
agentTool derives agent components from their assigned roles and assigns ex-
ternal events to specific protocols. In the second stage, agentTool annotates
the component state diagrams to determine where conversations start and end.
During the last stage, agentTool extracts the annotated states and transitions
and uses them to create new conversations, replacing them in the component
state diagram with actions initiating the conversation.

A second set of transformations that is currently implemented in agentTool
consists of transformations to add functionality required for mobility. In the

www.manaraa.com

124 Methodologies and Software Engineering for Agent Systems

analysis phase, mobility is specified using a move activity in the state of a
concurrent task diagram. This move activity is copied directly into the as-
sociated component state diagram during the initial set of analysis-to-design
transformation described above. During the mobility transformation, the ex-
isting design is modified to coordinate the mobility requirements between all
components in the agent design. In the derived mobility design, the Agent-
Component is responsible for coordinating the entire move and working with
the external agent platform to save its current state and actually carry out the
move.

The agentTool system also provides automatic verification of conversations.
The verification process begins with the fully automated translation of system
conversations into the Promela modeling language. Then, the Promela model
is automatically analyzed using the Spin verification tool to detect errors such
as deadlock, non-progress loops, syntax errors, unused messages, and unused
states (Holzmann, 1997). Feedback is provided to the designer automatically
via text messages and graphical highlighting of error conditions.

6. Applications

MaSE has been successfully applied in many graduate-level projects as well
as several research projects. The Multiagent Distributed Goal Satisfaction
project used MaSE to design the collaborative agent framework to integrate dif-
ferent constraint satisfaction and planning systems. The Agent-Based Mixed-
Initiative Collaboration project also used MaSE to design a MAS focused on
distributed human and machine planning. MaSE has been used successfully
to design an agent-based heterogeneous database system as well as a multia-
gent approach to a biologically based computer virus immune system. More
recently, we applied MaSE to a team of autonomous, heterogeneous search and
rescue robots (DeLoach et al., 2003). The MaSE approach and models worked
very well. The concurrent tasks mapped nicely to the typical behaviors in robot
architectures. MaSE also provided the high-level, top-down approach missing
in many cooperative robot applications.

7. Comparison with other Methodologies

There have been several methodologies proposed for developing MAS (see
chapter 7). However, we only compare MaSE against the two other method-
ologies presented in this book: Gaia (see chapter 4) and Tropos (see chapter 5).

The Gaia method, as presented in chapter 4, is one of the best-known ap-
proaches to building MAS and has many similarities with MaSE. As in MaSE,
Gaia uses roles as building blocks. In general, both the analysis phases of
MaSE and Gaia capture much of the same type of information, although in
different types of models. The major difference is in the level of support for

www.manaraa.com

The MaSE Methodology 125

detailed agent design provided by Gaia. Gaia produces a high-level design
and assumes the details will be developed using traditional techniques whereas
MaSE provides models and guidance on creating the detailed design.

Tropos, which was presented in chapter 5, take a significantly different ap-
proach than MaSE. Tropos focuses on early requirements definition, which is
not stressed with MaSE. Tropos uses Yu’s i* framework (Yu, 2001), which
provides a nice front end to Tropos. In fact, the Tropos early requirements ap-
proach could be used with MaSE as the goal model of each methodology are
essentially the same.

www.manaraa.com

Chapter 7

A COMPARATIVE EVALUATION OF
AGENT-ORIENTED METHODOLOGIES

Arnon Sturm and Onn Shehory

Abstract Multiple agent-oriented methodologies were introduced in recent years, however
no systematic evaluation of these was offered. In this work we perform a com-
parative evaluation of three well-known agent-oriented methodologies: Gaia,
Tropos, and MaSE. To perform this evaluation we use an existing framework
that focuses on four major facets of a methodology: concepts and properties,
notations and modeling techniques, development process, and pragmatics. Ana-
lyzing the results of our evaluation, we recognize several facets that need further
improvements within the existing agent-oriented methodologies. Our study does
not attempt to state what the right methodology is. Rather, it examines existing
agent-oriented methodologies.

1. Introduction
During the last decade, many methodologies for developing agent-based

systems have been developed. A methodology is the set of guidelines for cov-
ering the whole lifecycle of system development both technically and manage-
rially. A methodology, according to (Graham et al., 1997), should provide the
following: a full lifecycle process; a comprehensive set of concepts and mod-
els; a full set of techniques (rules, guidelines, heuristics); a fully delineated
set of deliverables; a modeling language; a set of metrics; quality assurance;
coding (and other) standards; reuse advice; and guidelines for project manage-
ment. The relationships between these components are shown in Figure 7.1.
In that figure, we use the UML notations to depict the relationships between
the components. As depicted in the figure, a methodology consists of a set of
techniques, a modeling language and a lifecycle process. The set of techniques
consists of metrics, quality assurance (QA) activities, a set of standards and
tools. The modeling language comprises notations and a meta model. The
lifecycle process consists of project management, a number of roles (e.g., an
analyst or a designer), a number of procedures (e.g., how to move between

www.manaraa.com

128 Methodologies and Software Engineering for Agent Systems

development stages), and a number of deliverables (e.g., a design document,
source code). In addition, Figure 7.1 shows that the tools should be based on
the meta model of the modeling technique and should represent the modeling
technique’s notations. The deliverables should use the modeling technique.

Figure 7.1. The components of a methodology and the relationships among them

At present, more than two dozens agent-oriented methodologies exist. The
multiplicity and variety of methodologies result in the following problems: (i)
industrial problem: selecting a methodology for developing an agent-based
system/application becomes a non-trivial task, in particular for industrial de-
velopers which hold specific requirements and constraints; (ii) standards prob-
lem: multiple different methodologies are counter-productive for arriving at
a standard. With no standard available, potential industrial adopters of agent
technology refrain from using it; and (iii) research problems: excessive ef-
forts are spent on developing agent-oriented methodologies, in times producing
overlapping results. Additionally, as a result of allocating resources to multi-
ple methodologies, no methodology is allocated sufficient research resources to
enable addressing all facets and providing a full-fledged agent-based method-
ology.

A few evaluations of agent-oriented methodologies have been suggested.
In (Yu and Cysneiros, 2002), the authors set a list of questions that a method-
ology should address. However, neither evaluation nor a comparison has been
performed using that set. Another study (Cernuzzi and Rossi, 2002) suggests a
framework for evaluating agent-oriented methodologies. That framework uses
a set of evaluation criteria to examine methodologies’ expressiveness, how-
ever it does not examine other properties encompassed within the methodol-
ogy definition. In (Kumar, 2002), the author performs an evaluation of five
agent-oriented methodologies, however, he refers only to some supported con-
cepts such as organization design and cooperation and not to the broad set
of attributes that constitute a complete methodology. In (Shehory and Sturm,

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 129

2001), the authors perform an evaluation of the modeling part within a method-
ology, however other parts are not evaluated. In (Dam and Winikoff, 2003),
three methodologies were compared: MaSE (see chapter 6), Prometheus (see
chapter 11) and Tropos (see chapter 5). The comparison was performed by
gathering feedback regarding the properties of the methodologies from stu-
dents that used them, and from the methodologies’ developers. The gathered
feedback included several inconsistent answers. This results in difficulty in
analyzing methodology properties.

Other studies that deal with evaluating agent-oriented methodologies com-
pared two or three methodologies, yet mainly with respect to the expressive-
ness of the methodologies and their supported concepts, and not with respect
to other software engineering criteria.

In this chapter we evaluate three well-known methodologies: Gaia (see
chapter 4), Tropos (see chapter 5), and MaSE (see chapter 6). Unlike previous
research on the evaluation of agent methodologies, our evaluation examines
multiple dimensions, possibly referring to all of the major facets relevant to
methodology evaluation. We perform this evaluation relying on the evaluation
framework suggest by (Sturm and Shehory, 2003). We present this evaluation
framework in section 2. We then perform evaluations of the methodologies in
sections 3 to 5. This series of evaluations is concluded in section 6.

2. The Evaluation Framework

The evaluation framework used in this chapter is based on a feature analysis
technique. That is, the features of each of the examined methodologies are
evaluated. The evaluation is performed based on information regarding the ex-
amined methodologies available in publications. The framework’s four facets
are: concepts and properties, notations and modeling techniques, development
process, and pragmatics. These facets, and the metric used in conjunction with
them, are introduced below.

2.1 Concepts and Properties

A concept is an abstraction or a notion inferred or derived from specific
instances within a problem domain. A property is a special capability or a
characteristic. This section deals with the question whether a methodology
addresses the basic notions (concepts and properties) of agents and MAS. The
following are the concepts according to which an agent-oriented methodology
should be evaluated:

1

2

Autonomy: is the ability of an agent to operate without supervision;

Reactiveness: is the ability of an agent to respond in a timely manner to
changes in the environment;

www.manaraa.com

130 Methodologies and Software Engineering for Agent Systems

3

4

Proactiveness: is the ability of an agent to pursue new goals; and

Sociality: is the ability of an agent to interact with other agents by send-
ing and receiving messages, routing these messages, and understanding
them.

In the following we present the building blocks that encompass the basic com-
ponents of MAS. These building blocks are based on (Sturm and Shehory,
2003).

1

2

3

4

5

6

7

8

9

10

11

Agent: is a computer program that can accept tasks, can figure out which
actions to execute in order to perform these tasks and can actually exe-
cute these actions without supervision. It is capable of performing a set
of tasks and providing a set of services.

Belief: is a fact that is believed to be true about the world.

Desire: is a fact of which the current value is false and the agent (that
owns the desire) would prefer that it be true. Desires within an agent
may be contradictory. A widely used specialization of a desire is a goal.
The set of goals within an agent should be consistent.

Intention: is a fact that represents the way of realizing a desire. Some-
times referred to as a plan.

Message: is a means of exchanging facts or objects between entities.

Norm: is a guideline that characterizes a society. An agent that wishes to
be a member of the society is required to follow all of the norms within.
A norm can be referred to as a rule.

Organization: is a group of agents working together to achieve a com-
mon purpose. An organization consists of roles that characterize the
agents, which are members of the organization.

Protocol: is an ordered set of messages that together define the admissi-
ble patterns of a particular type of interaction between entities.

Role: is an abstract representation of an agent’s function, service, or
identification within a group.

Society: is a collection of agents and organizations that collaborate to
promote their individual goals.

Task: is a piece of work that can be assigned to an agent or performed by
it. It may be a function to be performed and may have time constraints.

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 131

2.2 Notations and Modeling Techniques

Notations are a technical system of symbols used to represent elements
within a system. A modeling technique is a set of models that depict a sys-
tem at different levels of abstraction and different system’s facets (e.g., struc-
tural and behavioral facets). This section deals with the properties to which
methodology’s notations and modeling techniques should adhere. The list of
these properties is adopted from (Shehory and Sturm, 2001).

1

2

3

4

5

Accessibility: is an attribute that refers to the ease, or the simplicity, of
understanding and using a method. It enhances both experts and novices
capabilities of using a new concept.

Analyzability: is a capability to check the internal consistency or impli-
cations of models, or to identify aspects that seem to be unclear, such as
the interrelations among seemingly unrelated operations. This capability
is usually supported by automatic tools.

Complexity management (abstraction): is an ability to deal with various
levels of abstraction (i.e., various levels of detail). Sometimes, high-
level requirements are needed, while in other situations, more detail is
required. For example, examining the top level design of a MAS, one
would like to understand which agents are within the system, but not nec-
essarily what their attributes and characterizations are. However, when
concentrating on a specific task of an agent, the details are much more
important than the system architecture.

Executability (and testability): is a capability of performing a simula-
tion or generating a prototype of at least some aspects of a specification.
These would demonstrate possible behaviors of the system being mod-
eled, and help developers determine whether the intended requirements
have been expressed.

Expressiveness (and applicability to multiple domains): is a capability
of presenting system concepts that refers to:

The structure of the system;

The knowledge encapsulated within the system;

The system’s ontology;

The data flow within the system;

The control flow within the system;

The concurrent activities within the system (and the agents);

The resource constraints within the system (e.g., time, CPU and
memory);

www.manaraa.com

132 Methodologies and Software Engineering for Agent Systems

The system’s physical architecture;

The agents’ mobility;

The interaction of the system with external systems; and

The user interface specification.

6

7

Modularity (incrementality): is the ability to specify a system in an iter-
ative incremental manner. That is, when new requirements are added it
should not affect the existing specifications, but may use them.

Preciseness: is an attribute of disambiguity. It allows users to avoid
misinterpretation of the existing models.

2.3 Development Process
A development process is a series of actions that, when performed, result

in a working computerized system. This section deals with the process de-
velopment facet of a methodology. This facet is evaluated by examining the
following:

1

2

Development context: specifies whether a methodology can be used
in creating new software, reengineering or reverse engineering existing
software, prototyping, or designing for or with reuse components.

Lifecycle coverage: specifies what elements of software development
are dealt with within the methodology. Each methodology may have
elements that are useful in several stages of the development lifecycle.
Here, the lifecycle stages are defined as follows: requirements’ gather-
ing, analysis, design, implementation, and testing.

Having the development stages defined is not sufficient to render a method-
ology usable. A methodology should further elaborate the activities within
the development lifecycle. Providing a detailed description of the activities
included in the development lifecycle would enhance the appropriate use of a
methodology and increase its acceptability as a well-formed engineering ap-
proach. To verify that a methodology provides detailed activity descriptions,
we need to examine the details of the development process. This verification
can be performed by answering the following questions regarding an evaluated
methodology:

1 What are the activities within each stage of a methodology? For ex-
ample, an activity can be the identification of a role, a task, etc. The
methodology may consist of heuristics or guidelines helping the devel-
oper to achieve his/her system development goals.

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 133

2

3

4

5

Does the process provide for verification? This question checks whether
a methodology has rules for verifying adherence of its deliverables to
the requirements.

Does the process provide for validation? This question checks whether
a methodology has rules for validating that the deliverables of one stage
are consistent with its preceding stage.

Are quality assurance guidelines supplied?

Are there guidelines for project management?

2.4 Pragmatics

Pragmatics refers to dealing with practical aspects of using a methodology.
This section deals with pragmatics of adopting the methodology for a project
or within an organization. In particular, the framework suggests examining the
following:

1

2

3

Resources: are the (publicly available) publications describing in detail
the methodology (e.g., textbooks and papers), users’ groups, training and
consulting services offered by third parties and automated tools (CASE
tools) available in support of the methodology (e.g., graphical editors,
code generators, and checkers).

Required expertise: is the required background of those learning the
methodology. A distinguishing characteristic of many methodologies
is the level of mathematical sophistication required to fully exploit the
methodology. A criterion within the required expertise may check the
required knowledge in some discipline.

Language (paradigm and architecture) suitability: is the level to which
the methodology is coupled with a particular implementation language
(e.g., object oriented programming language) or a specific architecture
(e.g., BDI).

Domain applicability: indicates the level of suitability of a methodology
to a variety of domains (e.g., information systems, real-time systems).

Scalability: is the ability of the methodology to be adjusted to handle
various application sizes. For example, can it provide a lightweight ver-
sion for simple problems.

4

5

2.5 Metric

To enable ranking of the properties examined in the evaluation process, the
framework proposes a scale of 1 to 7 with the following interpretations:

www.manaraa.com

134 Methodologies and Software Engineering for Agent Systems

1

2

3

4

5

6

7

Indicates that the methodology does not address the property.

Indicates that the methodology refers to the property but no details are
provided.

Indicates that the methodology addresses the property to a limited ex-
tent. That is, many issues that are related to the specific property are not
addressed.

Indicates that the methodology addresses the property, yet some major
issues are lacking.

Indicates that the methodology addresses the property, however, it lacks
one or two major issues related to the specific property.

Indicates that the methodology addresses the property with minor defi-
ciencies.

Indicates that the methodology fully addresses the property.

Thus far, we have described the evaluation framework, its evaluation criteria,
and its metric. Using these, we proceed with evaluating the Gaia, Tropos and
MaSE methodologies.

3. Evaluating Gaia
In this section we evaluate Gaia according to the framework presented in

section 7.2. We are fully aware of studies that extend Gaia in various facets
such as expressiveness (Juan et al., 2002) and implementation (Moraitis et al.,
2002). However, in this evaluation, we refer only to (Wooldridge et al., 2000b)
and (Zambonelli et al., 2001b), written by the designers of the methodology.

3.1 Concepts and Properties

Below, we examine the extent to which Gaia addresses the concepts and the
properties suggested by the evaluation framework. Gaia deals with all of the
general concepts suggested, but lacks in depicting mental states of an agent.

1 Autonomy: in Gaia the autonomy is expressed by the fact that the role
encapsulates its functionality (i.e., it is responsible for it). This function-
ality is internal and is not affected by the environment, thus represents
the role’s autonomy. In addition, in Gaia there is an option to model
alternative computational paths, which gives the role (and agents that
consist of this role) autonomy in making decisions. The ranking grade
is 7.

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 135

2

3

4

Reactiveness: in Gaia the reactiveness is expressed by the liveness prop-
erties within the role’s responsibilities. The ranking grade is 7.

Proactiveness: in Gaia the proactiveness is expressed by the liveness
properties within the role’s responsibilities. The ranking grade is 7.

Sociality: in Gaia the sociality is expressed within the acquaintance
model that defines the communication links among agent types. Fur-
ther, some sociality aspects can be expressed using the organizational
structure and rules. Yet, there is no explicit specification of relationships
between organizations and roles and societies within MAS. The ranking
grade is 4.

Examining the coverage of the framework’s building blocks by Gaia, we
found that Gaia covers most of them, as seen in Table 7.1. However, the BDI
concepts, the social building blocks, and the knowledge representation are not
dealt with within Gaia. The ranking grade is 4.

3.2 Notations and Modeling Techniques

Following, we examine the extent to which Gaia addresses the notations and
modeling techniques’ properties suggested by the evaluation framework. Gaia
has room for improvements with regards to these properties. In addition, Gaia
does not define its entire set of notations.

www.manaraa.com

136 Methodologies and Software Engineering for Agent Systems

1

2

3

4

5

Accessibility: Gaia models are easy to understand and use. Yet, the
behavior of the system is introduced via a set of logic expressions. This
might introduce difficulties in understanding the behavioral specification
of a system. The ranking grade is 5.

Analyzability: this issue is not dealt with within Gaia. The ranking grade
is 1.

Complexity management: in Gaia, there is no hierarchical presentation
or another mechanism for complexity management. The system’s de-
scription is flat. The ranking grade is 1.

Executability: this issue is not dealt with within Gaia. The ranking grade
is 1.

Expressiveness: Gaia is expressive and can handle a large variety of
systems due to its generic structure. However, Gaia is mostly suitable for
small and medium scale systems. This is because of its flatness, which
limits the ability to model a large amount of details. In the following we
present our analysis regarding the expressiveness of Gaia according to
the properties defined in the previous section:

the structure of the system is not presented explicitly;

the knowledge encapsulated within the system is not presented ex-
plicitly;

the system’s ontology is not dealt with;

the data flow within the system is depicted using textual specifica-
tions (via the dot and square brackets operators);

the control flow within the system is not presented explicitly;

the concurrent activities within the system (and within the agents)
are not presented explicitly;

the resource constraints within the system (e.g., time, CPU and
memory) are specified only partially using the permissions within
Gaia;

the system’s physical architecture is not dealt with;

the agents’ mobility is not dealt with;

the interaction of the system with external systems are not pre-
sented explicitly; and

the user interface specification is not dealt with.

The ranking grade is 4.

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 137

6

7

Modularity: Gaia is mostly modular due to its design, including building
blocks such as roles, protocols, activities and agent types. In Gaia, one
can assign new roles to agents and remove roles with no effect on the
internal model of the roles. However, changes within the protocol might
cause changes within the internal structure of the role. These result in
changes in permissions of the role, hence limits the modularity of Gaia.
The ranking grade is 4.

Preciseness: the liveness and safety properties, which are used for de-
picting the functionality of a role in a formal way (i.e., for each symbol
and notation there is a clear meaning and interpretation), make Gaia ac-
curate and prevent misinterpretation of the modeled functionality. The
symbols and notations of each of the other Gaia models have a clear
meaning as well. The ranking grade is 7.

3.3 Development Process
Below, we examine the extent to which Gaia addresses the development

process properties suggested by the framework. Gaia deals only with some
aspects of the development process. With respect to the lifecycle coverage, it
handles the analysis and design stages.

1

2

3

4

5

Development context: Gaia is adequate for the following development
contexts: it can be used for creating new software, reengineering and
designing systems with reuse components. However, Gaia does not sup-
port classical reverse engineering (from code to a model), since it does
not address implementation aspects. For the same reason, it cannot be
used for prototyping (especially, a rapid one). The ranking grade is 5.

Lifecycle coverage: is very limited within Gaia. It refers only to the anal-
ysis and the design stages within the development lifecycle. We found
that fact a drawback of Gaia as a methodology, since it would require de-
velopers of MAS to adjust the Gaia-based design to the concepts of the
target programming language. For example, one may translate the Gaia
analysis and design results to UML notations and than use an object-
oriented language for implementation. The ranking grade is 3.

Stages’ activities within the methodology: Gaia provides a few guide-
lines for performing the analysis and design activities. The ranking grade
is 4.

Verification and validation: these issues are not dealt with within Gaia.
The ranking grade is 1.

Quality assurance: this issue is not dealt with within Gaia. The ranking
grade is 1.

www.manaraa.com

138 Methodologies and Software Engineering for Agent Systems

6 Project management guidelines: this issue is not dealt with within Gaia.
The ranking grade is 1.

3.4 Pragmatics

Following, we examine the extent to which Gaia addresses the pragmatics
properties suggested by the evaluation framework. Apparently, Gaia lacks in
addressing some of these properties.

1

2

3

4

5

Resources: although Gaia is well known, there are not much available
materials on it (except of the two cited papers). There are no users’
groups, nor training or consulting services are offered. Additionally,
Gaia does not provide automated tools. The ranking grade is 3.

Required expertise: Gaia requires a solid background and knowledge
in logic and temporal logic. This reduces its accessibility since many
developers do not know or do not want to get familiar with logic (and
formal methods). The ranking grade is 4.

Language suitability: Gaia is not targeted at a specific language. It does
not refer to the implementation issues, thus the specification made using
Gaia can be implemented in any language. The ranking grade is 7.

Domain applicability: Gaia, as determined by its developers, is suit-
able to develop applications with the following characteristics: agents
are coarse-grained computational systems, agents are heterogeneous, the
abilities of the agents are static, and the number of agent types is com-
paratively small. Gaia is also suitable for dynamic-open systems where
the agents are not known when designing the system. Yet, Gaia is not
suitable for developing applications with dynamic characteristics such
as goals generation. The ranking grade is 5.

Scalability: Gaia does not support the use of subsets thereof for system
development. Yet, due to its simple structure, it may fit different appli-
cation sizes. The ranking grade is 5.

4. Evaluating Tropos

In this section we evaluate Tropos (see chapter 5) according to the frame-
work presented in section 7.2. In this evaluation we refer to Tropos as pre-
sented in (Castro et al., 2002) and (Giunchiglia et al., 2002).

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 139

4.1 Concepts and Properties

Below, we examine the extent to which Tropos addresses the concepts and
the properties suggested by the framework. Tropos basically addresses the
suggested properties, yet, it lacks in social-related aspects.

1

2

3

4

Autonomy: in Tropos the autonomy is specified in each one of the de-
velopment phases. In the requirements phases of Tropos the autonomy
is expressed by each actor’s individual goals. Each actor has its own
agenda of how to achieve its goals. In the architectural design phase the
autonomy is expressed by the capabilities of each actor. These elaborate
the actor’s agenda for achieving the goals. In the detailed design phase
the capabilities aforementioned are transformed into a set of UML ac-
tivity diagrams, which specify the way in which the actor performs its
activities. The ranking grade is 7.

Reactiveness: in Tropos the reactiveness is expressed explicitly only in
some of its development phases. Reactiveness is appropriately addressed
within the detailed design phase via the activity diagrams and the inter-
action diagrams. In the requirement phases of Tropos, events and re-
sponses to them are not expressed. In the architectural design phase,
events and their responses are not specified as well. The ranking grade
is 4.

Proactiveness: in Tropos the proactiveness is expressed by the activity
diagrams. The ranking grade is 7.

Sociality: the sociality in Tropos focuses on the actor’s interaction and
dependencies. Yet, there are no means for modeling organizations and
their actors. A study regarding the use of organization rules within Tro-
pos was performed, however, it does not solve the hierarchical relation-
ships and aggregation of actors and organizations. The ranking grade is
4.

Examining the coverage of the framework building blocks by Tropos, we
found that it covers most of them, as seen in Table 7.2. However, the building
blocks that are related to the social aspects are not addressed within Tropos.
The ranking grade is 5.

4.2 Notations and Modeling Techniques
Following, we examine the extent to which Tropos addresses the notations

and modeling techniques’ properties suggested by the framework. Tropos is
lacking in some of the important properties.

1 Accessibility: Tropos provides a set of models to support the entire de-
velopment process. Each one of the models is simple to understand,

www.manaraa.com

140 Methodologies and Software Engineering for Agent Systems

however, the need to synchronize among these models and the need to
perform a model transformation throughout the development stages re-
duce its accessibility. Further, we could not find definition of transfor-
mation rules between the models. The ranking grade is 4.

Analyzability: Tropos handles the analyzability aspect via various devel-
opment tools such as goal satisfaction (Fuxman et al., 2001) and model
checking. Yet, it is unclear how consistency is checked among different
stage of the development. The ranking grade is 4.

Complexity management: Tropos supports complexity management to
a limited extent. In the requirement phases, one can look into the goal
diagram of an actor, however, cannot control the level of details within.
In the design phases the complexity management is supported by the
UML mechanism. The ranking grade is 5.

Executability: Tropos demonstrates its executabilty using JACK (How-
den et al., 2001). However, there is no discussion of what the efforts
required to transform Tropos specification into JACK implementation
are. Additionally, there is no discussion of other alternatives for imple-
mentation. The ranking grade is 4.

Expressiveness: Tropos mainly refers to BDI applications. In the fol-
lowing we present our analysis regarding the expressiveness of Tropos
according to the properties defined in section 7.2:

2

3

4

5

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 141

the structure of the system is not presented explicitly;

the knowledge encapsulated within the system can be analyzed via
the goal representations;

the system’s ontology is not dealt with;

the data flow within the system is not presented explicitly;

the control flow within the system is specified using the activity
diagram within the detailed design phase;

the concurrent activities within the system (and within the agents)
are not presented explicitly;

the resource constraints within the system (e.g., time, CPU and
memory) are not dealt with; - the system’s physical architecture is
not dealt with;

the agents’ mobility is not dealt with;

the interaction of the system with external systems is not presented
explicitly; and

the user interface specification is not dealt with.

The ranking grade is 4.

6

7

Modularity: within Tropos is fully supported. The ranking grade is 7.

Preciseness: the semantics within Tropos are clear and thus prevent mis-
interpretation by its users. Tropos is formalized using the meta-model
technique. The ranking grade is 7.

4.3 Development Process
Below, we examine the extent to which Tropos addresses the development

process properties suggested by the framework. Tropos supports the traditional
stages of software development, yet, it does not deal with the supportive activ-
ities.

1

2

Development context: Tropos is adequate for the following development
contexts: it can be used for creating new software, reengineering, proto-
typing, and designing systems with reuse components. However, it does
not support the classical reverse engineering (from code to a model),
since when advancing from one stage to the preceding one several con-
cepts undergo significant changes. The ranking grade is 6.

Lifecycle coverage: Tropos covers most of the lifecycle. Hoever, it does
not handle the testing stage. The ranking grade is 6.

www.manaraa.com

142 Methodologies and Software Engineering for Agent Systems

3

4

5

6

Stages’ activities within the methodology: the descriptions of the activ-
ities performed within the Tropos stages are somewhat lacking in the
level of detail they provide. The ranking grade is 4.

Verification and validation: lately, Tropos was extended with a rich tem-
poral specification language called Formal Tropos (Fuxman et al., 2001).
Using that extension one may perform verification and validation over
his/her application model. Yet, there is no coverage checking with re-
spect to the initial requirements. The ranking grade is 5.

Quality assurance: this issue is not dealt with within Tropos. The rank-
ing grade is 1.

Project management guidelines: this issue is not dealt with within Tro-
pos. The ranking grade is 1.

4.4 Pragmatics

Following, we examine the extent to which Tropos addresses the pragmat-
ics properties suggested by the framework. The Tropos community consists
of many researchers and developers. This increases the amount of available
resources.

1

2

3

4

5

Resources: Tropos has a lot of publications and many people supporting
it. Additionally, a first workshop on Tropos has already been carried out.
Yet, there are no users’ groups, nor training or consulting services are
offered. Tropos provides various automated tools for animation, model
checking, and reasoning. The ranking grade is 5.

Required expertise: Tropos does not require special knowledge. The
ranking grade is 7.

Language suitability: Tropos is based on the BDI concepts. Hence, its
implementation will be biased towards that direction. The ranking grade
is 4.

Domain applicability: Tropos is suitable for developing BDI-based ap-
plications, and is suitable for generic, componentized systems like e-
business applications (Castro et al., 2002). The ranking grade is 7.

Scalability: Tropos does not provide details regarding the use of subsets
or a superset thereof for system development. The ranking grade is 4.

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 143

5. Evaluating MaSE

In this section we evaluate Multiagent System Engineering (MaSE) (see
chapter 6) according to the framework presented in section 7.2. In this evalua-
tion we refer to work presented in (DeLoach, 2001; DeLoach, 2002; DeLoach
et al., 2001; DiLeo et al., 2002; Self and DeLoach, 2003).

5.1 Concepts and Properties

Below, we examine the extent to which MaSE addresses the concepts and
the properties suggested by the framework. MaSE basically addresses the sug-
gested properties, yet, it lacks in social-related aspects.

1

2

3

4

Autonomy: in MaSE the autonomy is expressed by the fact that the role
encapsulates its functionality. This functionality (i.e., its tasks) is in-
ternal and is not affected by the environment, thus represents the role’s
autonomy. The ranking grade is 7.

Reactiveness: in MaSE the reactiveness is not expressed explicitly. That
is, there is no explicit connection between the event and the action taken.
Yet, reactiveness can be expressed using the conversation state machines.
The ranking grade is 4.

Proactiveness: in MaSE the proactiveness is expressed by the role’s
tasks. These tasks are modeled using finite state automata. The rank-
ing grade is 7.

Sociality: in MaSE the social aspects of a system (except for communi-
cation) are not dealt with. MaSE does not provide means for gathering
agents or defining organizations or societies. Yet, some sociality aspects
can be expressed using organizational rules. The ranking grade is 4.

Examining the coverage of the framework building blocks by MaSE, we
found that MaSE addresses most of them, as seen in Table 7.3. MaSE con-
ceptualizes a MAS, as a set of agents, however, there is no higher level of ab-
straction such as an organization or a society. Nevertheless, it provides means
for defining organization rules. The BDI concepts can be expressed using the
goal, the task and the state building blocks within MaSE. The message and
protocol building blocks are expressed in MaSE within the conversation di-
agrams and the task diagrams; however, MaSE does not explicitly show the
communication pattern. The ranking grade is 5.

5.2 Notations and Modeling Techniques
Following, we examine the extent to which MaSE addresses the notations

and modeling techniques’ properties suggested by the framework. MaSE ad-

www.manaraa.com

144 Methodologies and Software Engineering for Agent Systems

dresses most of these properties to a satisfactory level. However, it could still
benefit from further improvements.

1

2

3

4

Accessibility: MaSE provides a very simple set of models which en-
hance accessibility, however, the need of synchronizing among these
models and the need to perform a model transformation throughout the
development stages reduce its accessibility. The ranking grade is 5.

Analyzability: MaSE supports consistency checking and internal verifi-
cation of the models. However, there are still some cases where incon-
sistencies may occur, for example between a sequence diagram and the
transition between the states in a conversation. The ranking grade is 6.

Complexity management: There are several layers of abstraction within
MaSE: agents, roles, and tasks. However, there is no support of manag-
ing the complexity of complex tasks and roles, e.g., there are no means
for describing composite tasks. In addition, MaSE does not allow defin-
ing a role hierarchy. The ranking grade is 4.

Executability: MaSE supports partial code generation using agentTool
(see chapter 6), which is the CASE tool that supports the MaSE method-
ology. The generation includes complete conversations for many com-
munication frameworks. Since, MaSE dynamics is based on finite state

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 145

automaton it has the potential to achieve a code generation of high qual-
ity. The ranking grade is 4.

Expressiveness: MaSE has been used in several systems such as the
Multi-Agent Distributed Goal Satisfaction (MADGS) and the course
scheduling system. In the following we present our analysis regard-
ing the expressiveness of MaSE according to the properties defined in
section 7.2:

5

the structure of a system is explicitly described using the agent
architecture and system design diagrams;

the knowledge encapsulated within the system is not presented ex-
plicitly;

the system’s ontology is fully supported;

the data flow within the system cannot be specified explicitly;

the control flow within the system is not presented explicitly, how-
ever, it can be understood from the concurrent task diagram set;

the system’s physical architecture is specified using the deploy-
ment diagram;

the agents’ mobility is dealt with within MaSE via a special method
(i.e., the method move);

the interaction of the system with external systems is specified us-
ing the conversation concept; and

the user interface specification is not dealt with, however, MaSE
recommends that the user interface will be treated as a separate
role.

The ranking grade is 5.

Modularity: within MaSE is supported within the agent template dia-
gram. However, reuse of elements within MaSE such as tasks, roles,
protocols and conversations is not supported. The ranking grade is 4.

Preciseness: the semantics within MaSE are clear and thus prevent mis-
interpretation by its users. However, MaSE does not provide formal
definitions of its notations and models. The ranking grade is 6.

6

7

5.3 Development Process
Below, we examine the extent to which MaSE addresses the development

process properties suggested by the framework. In general, MaSE addresses
the traditional stages within the development process, however, it lacks in ad-
dressing the supportive activities.

www.manaraa.com

146 Methodologies and Software Engineering for Agent Systems

1

2

3

4

5

6

Development context: MaSE is adequate for the following development
contexts: it can be used in creating new software, reengineering and
designing systems with reuse components, and prototyping. However,
MaSE does not suppurt reverse engineering, since it may be diffucult to
transform models backwards. The ranking grade is 5.

Lifecycle coverage: is comprehensive within MaSE. The goal capturing
sub-stage and the applying use cases sub-stage can be considered as a
requirement stage, the analysis stage consists of the roles and tasks defi-
nition sub-stage and building the system ontology sub-stage, the design
stage consists of the construction and assembling of agents sub-stage and
the implementation stage consists of the system design sub-stage and the
code generation. The testing stage is not covered by MaSE. The ranking
grade is 5.

Stages’ activities within the methodology: MaSE provides guidelines for
performing the activities of the development stages. The ranking grade
is 7.

Verification and validation: MaSE performs verification over its models
to check consistency, to identify deadlocks and unused elements. In ad-
dition, it provides guidelines that support the coverage checking between
the stages. Yet, MaSE does not provide guidelines or means for check-
ing the requirements against the outcomes of each one of its stages. The
ranking grade is 4.

Quality assurance: this issue is not dealt with within MaSE. The ranking
grade is 1.

Project management guidelines: this issue is not dealt with within MaSE.
The ranking grade is 1.

5.4 Pragmatics

Following, we examine the extent to which MaSE addresses the pragmatics
properties suggested by the framework. MaSE provides a solid infrastructure
that encourages its use.

1

2

Resources: MaSE has many publications. It also has a Web site and a
CASE tool (agentTool). Yet, there are no users’ groups, nor training or
consulting services are offered. The ranking grade is 5.

Required expertise: MaSE requires a solid background and knowledge
in logic and temporal logic for using the organization rules. Other mod-
els do not require specific knowledge except for finite state automata.
The ranking grade is 5.

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 147

3

4

5

Language suitability: MaSE is not targeted at a specific programming
language, a specific architecture, or a specific framework. The ranking
grade is 7.

Domain applicability: MaSE is a general-purpose methodology for de-
signing MAS. The designers of MaSE report on using MaSE for various
types of agents and domains. The ranking grade is 7.

Scalability: MaSE does not provide details regarding the use of subsets
or a superset thereof for system development. It seems that when using
MaSE for specifying a system of any size, its user must follow the exact
development path set by MaSE. The ranking grade is 3.

6. Summary and Conclusion

We have evaluated three agent-oriented methodologies, utilizing a frame-
work that examines the various facets of a methodology. The results of that
evaluation are summarized in Table 7.4. Examining the table, it appears that
the level to which the evaluated methodologies support the various facets is, in
general, medium to high, and this is a positive result. Yet, there is space for
further improvements. Below we summarize the evaluation.

1

2

Concepts and properties: the autonomy and proactiveness criteria are
properly addressed by the methodologies. The reactiveness is lacking in
the sense that the connection between events and responses to them is not
well specified. The sociality deals with organization rules, but not with
multiple organizations or societies structure, nor with role hierarchy. The
building blocks coverage is good, however none of the methodologies
covers them all. This coverage varies among the methodologies as a
result of their different goals.

Notations and modeling techniques: this facet is addressed to a limited
extent. The accessibility of the methodologies is fine, however requires
further enhancements. Current limitations result from the multiplicity
of models and the use of logic within the specification stages. The an-
alyzability property is addressed within MaSE and Tropos. Complex-
ity management is hardly addressed within Gaia. Tropos and MaSE
need further enhancements in this respect as well. The level to which
the methodologies support executability is unclear. The expressiveness
is lacking in terms of multiple modeling needs not being explicitly ad-
dressed, e.g., the system knowledge and ontology, the data and control
flow and the user interface. The support for modularity requires fur-
ther improvements. The preciseness property is well supported by the
methodologies.

www.manaraa.com

148 Methodologies and Software Engineering for Agent Systems

3 Development process: this facet is lacking in both quality assurance and
project management. The methodologies support various development
contexts. With respect to the stages’ activities, MaSE provides a detailed
description of the development activities. The other two methodologies
require further enhancements. In addition, the traceability between the
different stages is unclear in all of the methodology.

4 Pragmatics: Gaia and MaSE suffer from lack of resources and very lim-
ited use. Tropos provide many resources since it is developed in several
research institutes. Except for MaSE, the methodologies lack in provid-
ing environments to support the development stages. Except for logic,

www.manaraa.com

A Comparative Evaluation of Agent-Oriented Methodologies 149

the methodologies do not require that designers have special expertise
for their use. The methodologies are not coupled to a specific program-
ming language or an agent architecture, and can be used for multiple
domains. Scalability (i.e., the ability to be adjusted according to a spe-
cific project needs) is not supported by the methodologies.

In conclusion, the examined agent-oriented methodologies provide an ap-
propriate infrastructure, however there is a need for further research and im-
provements. This is an important conclusion in support of agent-oriented
methodologies, as it may promote these enhancements and help arriving at
industry-grade methodologies. Additionally, the evaluation performed here
provides researchers and practitioners with a detailed comparison among the
leading agent-oriented methodologies. Further, the framework used in this
study may be utilized by others to evaluate and compare other methodologies
as needed.

www.manaraa.com

III

SPECIAL-PURPOSE METHODOLOGIES

www.manaraa.com

Introduction

A general methodology is a methodology applicable to a wide range of
MAS‚ i.e.‚ not devoted to a specific agent architecture. A special-purpose
methodology is a methodology which is dedicated to a field of applications
such as Internet applications‚ telecommunication applications‚ e-commerce ap-
plications‚ etc. and sometimes as a result to a specific computational architec-
ture agent and/or platform.

Applications belonging to a same field share the same characteristics which
are taken into account in the methodology and consequently are predominant
to choose the methodology. It is quite evident that the characteristics of the ap-
plications are also those that are required by an agent or MAS. But in addition‚
the concerned applications have well-know and well established characteristics
such as: the system’s environment is dynamic (making it ineffective to exhaus-
tively enumerate all the situations the system may encounter)‚ the system is
open and therefore dynamic because it is constituted of a shifting number of
components‚ the task the system has to achieve is so complex that a perfect
design cannot be guaranteed‚ the system must be implemented on the Internet‚
agents in the system need negotiation‚ etc.

A general methodology is suitable to develop the associated software but us-
ing a special-purpose methodology improves the software development. It fa-
cilitates designers’ work and shortens the development time. In these method-
ologies‚ the tasks to be realized in the requirement and analysis phases are quite
identical to the tasks to do in all methodologies. The differences are more sig-
nificant in the three last phases‚ i.e.‚ design‚ implementation and deployment.
The design phase is generally more detailed than the general ones because the
agent architecture is known. That is to say the different modules which are
composing an agent must be filled up during a step of the design phase. For
example‚ if the agent architecture is BDI‚ designers have to explicitly describe
beliefs‚ desires and intentions. The design of each of these modules is spec-
ified during the design phase. So the design phase of these methodologies is

www.manaraa.com

154 Methodologies and Software Engineering for Agent Systems

detailed and leads easily to implementation. Because sometimes the platform
to develop the software is known‚ development and deployment phases are
made easier for designers. For example‚ having an automatic code generation
towards a chosen platform would be conceivable.

The four chapters in this part explore four methodologies: ADELFE‚ MES-
SAGE‚ SADDE and Prometheus. In a sense‚ having classified these method-
ologies as special-purpose ones is not intended to support the claim that they
are not general enough‚ but rather to be explicit on the fact that they are possi-
bly much more suited than others for specific aspects.

Chapter 8‚ “The ADELFE Methodology” written by Gauthier Picard and
Marie-Pierre Gleizes expounds this methodology‚ which is dedicated
to applications characterized by openness and the need of the system
adaptation to an environment. This methodology is based on the RUP
process and follows its main phases: preliminary requirements‚ final re-
quirements‚ analysis and design‚ and uses UML and AUML notations.
Some of the new tasks compared with object-oriented methodologies
are: the characterization of the environment in the final requirements‚
a step to decide if an adaptive system is needed to design the appli-
cation and agent identification during the analysis phase. During the
design phase‚ a specific architecture of cooperative agent is used to de-
sign agents. A commercialized tool “OpenTool” supporting UML was
extended to support AUML notations.

Chapter 9‚ “The MESSAGE Methodology” by Giovanni Caire‚ Win
Coulier‚ Francisco Garijo‚ Jorge Gomez‚ Juan Pavon‚ Paul Kearney and
Philippe Massonet‚ describes this methodology‚ developed for main-
stream software engineering departments and for designing telecommu-
nications applications. The main concepts of MESSAGE are agent‚ or-
ganization‚ role‚ task and interaction. MESSAGE follows the RUP pro-
cess and uses UML and AUML notations. Authors are focusing the pre-
sentation on the analysis and the design phases. The methodology offers
designers some refinement strategies in which each level expands con-
cepts of the lower levels. The design phase is divided into two parts: a
higher level which refines analysis models and a lower level which deals
with a BDI agent architecture or JADE or FIPA-OS platform.

Chapter 10‚ “The SADDE Methodology” by Carles Sierra‚ Jordi Sabater‚
Jaurne Agusti and Pere Garcia presents the general steps of SADDE
methodology and its use in electricity market case study. This methodol-
ogy is dedicated to Electronic Institutions applications. Four main steps
are composing SADDE: the Equation-Based Model to model the global
behavior of the system‚ the Electronic Institution Model to specify inter-
actions between agents‚ the Agent-Based Model which uses evolutionary

www.manaraa.com

Introduction 155

computing and the MAS level to experiment. After the last step‚ design-
ers can realize backtracks to redesign and refine the different previous
models of the system.

Chapter 11‚ “The Prometheus Methodology” by Michael Winikoff and
Lin Padgham gives an overview of Prometheus methodology which is
based on the RUP and is composed of the specification‚ the architectural
design and the detailed design phases. During the specification phase‚
interactions between the system and the environment are studied in terms
of percepts and actions. During the architectural design phase‚ design-
ers can identify agent types by grouping some functionality. During the
detailed design phase‚ agents are designed using an iterative refinement
from their functionalities‚ at the beginning BDI agent architectures are
used. Prometheus Design Tool‚ the tool associated with the method-
ology‚ supports the process of the methodology‚ enables to design dia-
grams and to check some inconsistencies. JACK Development Environ-
ment supports Prometheus and enables generating a skeleton code from
design artifacts.

www.manaraa.com

Chapter 8

THE ADELFE METHODOLOGY

Gauthier Picard and Marie-Pierre Gleizes

Abstract This paper presents a method named ADELFE‚ which is led by the Rational Uni-
fied Process but is devoted to software engineering of adaptive MAS. ADELFE
guarantees that the software is developed according to the AMAS theory1. We
focus this presentation on the four first core workflows of the RUP. Therefore‚ in
the preliminary requirements an agreement on what the system has to do must
be reached. During the final requirements phase‚ the environment of the studied
system must be defined and characterized. Then‚ in the analysis phase‚ the en-
gineer is guided to decide to use adaptive multiagent technology and to identify
the agents through the system and the environment models. Finally‚ the design
workflow of ADELFE must provide the cooperative agent’s model and helps the
developer to define the local agents’ behavior. We illustrate the methodology by
applying it to a case study: a timetable design.

1. Introduction
Nowadays‚ problems to solve in computer science are becoming more and

more complex (like information search on the Internet‚ mobile robots mov-
ing in the real world and so on). Systems able to respond to such problems
are open and complex because they are incompletely specified‚ they are im-
mersed in a dynamical environment and more importantly an a priori known
algorithm to find a solution does not exist. This solution must build itself ac-
cording to interactions the system will have with its environment during its
functioning. Classical approaches to solve problems in such a context cannot
be applied. That led us to propose a theory called AMAS (Adaptive Multi-
Agent System) theory (Capera et al.‚ 2003a) (see chapter 16)‚ based on the use
of self-organizing systems (see chapters 17).

This theory has been successfully applied to many projects: a tool to manage
the knowledge required to assist a user during information retrieval training‚ an

1The Adaptive Multi-Agent Systems (AMAS) theory has been in development and applied for the last 8
years at the Research Institute in Computer Science of Toulouse (IRIT).

www.manaraa.com

158 Methodologies and Software Engineering for Agent Systems

electronic commerce tool for mediation of services‚ a software tool for adap-
tive flood forecast or adaptive routing of the traffic in a telephone network.
Obtained results led us to promote the use of self-organizing systems based
on the AMAS theory and to build a method for designing such systems. They
are required both to reuse our know-how and to guide an engineer during an
application design. In that sense‚ ADELFE is a toolkit to develop software
with emergent functionality (Bernon et al.‚ 2002). ADELFE is not a general
method; it concerns applications in which self-organization makes the solu-
tion emerge from the interactions of its parts. It guarantees that the software
is developed according to the AMAS theory. It also gives some hints to the
designer to tell him if using the AMAS theory is relevant to build his applica-
tion. The ADELFE toolkit enables the development of software with emergent
functionality and consists of a software development process‚ a notation based
on UML/ AUML (see chapter 12)‚ some tools supporting the process‚ and the
notations and a library of components that can be used to make the application
development easier.

This chapter is structured as follow: section 2 gives principal concepts of the
AMAS theory and a brief overview of the methodology and of the case study:
ETTO (Emergent Time Tabling Organization) application used to illustrate the
process. Then‚ sections 3‚ 4‚ 5 and 6 detail respectively the requirement‚ the
specification and the design work definitions. Section 7 presents the main tools
associated with ADELFE. Before concluding‚ section 8 gives a brief compari-
son to some other well-known methodologies.

2. ADELFE Methodology Overview

In this section‚ after a brief presentation of the AMAS theory on which
ADELFE is based on‚ an overview of the ADELFE method is expounded.
Then‚ the requirements for the timetabling problem2 case study used to illus-
trate the methodology are presented.

2.1 The AMAS Theory

The AMAS theory provides a solution to build complex systems for which
classical algorithmic solutions cannot be applied (Capera et al.‚ 2003a; Capera
et al.‚ 2003b). Concerned systems are open and complex. All the interactions
the system may have with its environment cannot be exhaustively enumerated;
unpredictable interactions can occur during the system functioning and the sys-
tem must adapt itself to these unpredictable events. The solution provided by
the AMAS theory is then to rid ourselves of the global searched goal by build-

2This example was elaborated as a case study to compare and discuss different methodologies and multia-
gent platforms for the ASA Group of the French Artificial Intelligence Association.

www.manaraa.com

The ADELFE Methodology 159

ing artificial systems for which the observed collective activity is not described
in any agent composing it. Each internal part of the system (agent) only pur-
sues an individual objective and interacts with agents it knows by respecting
cooperative techniques which lead to avoid unpredictable situations (like con-
flict‚ concurrency‚ etc.)‚ called Non Cooperative Situations (NCS). Faced with
a NCS‚ a cooperative agent acts to reach a new cooperative state and perma-
nently adapts itself to unpredictable situations while learning on others. In-
teractions between agents depend on their local view and on their ability to
cooperate with each other. Changing these local interactions reorganizes the
system and thus changes its global behavior.

Applying the AMAS theory consists in enumerating‚ according to the cur-
rent problem to solve‚ all the cooperative failures that can appear during the
system functioning and then defining the actions the system must apply to
come back to a cooperative state.

2.2 ADELFE Overview

The ADELFE process consists in six work definitions: Preliminary Require-
ments‚ Final Requirements‚ Analysis‚ Design‚ Implementation and Tests.

Among the different activities or steps that are listed in Figure 8.1‚ some
are marked with a bold font to show that they are specific to adaptive MAS.
Only the four work definitions require modifications in order to be tailored to
AMAS and the main activities are presented in the next sections. Other work
definitions appearing in the RUP remain the same (Jacobson et al.‚ 1999).

2.3 The ETTO Case Study

In order to show how a self-organizing application can be developed using
the tools linked with ADELFE‚ the next sections will refer to the ETTO (or
Emergent Time Tabling Organization) application. Description and design of
the system related to ETTO are not the main objective of this article and more
information is available in (Bernon et al.‚ 2002). The chosen problem is a clas-
sical course timetabling one in which time slots and locations (rooms) must
be assigned to teachers and students groups in order to let them meet during
lectures. Usually‚ solutions to such a problem can be found using different
techniques like constraint-based ones or meta-heuristics techniques (simulated
annealing‚ taboo search‚ graph coloring‚ etc.) and more recently‚ neural net-
works‚ evolutionary or ant algorithms. However‚ no real solving technique
exists when the constraints can dynamically evolve and when the system needs
to adapt. Because this problem is not a simulation one‚ because it is actually
complex when handmade or not (it belongs to the NP-complete class of prob-
lems) and has no universal solution‚ we do think that it represents the right
example to apply the AMAS theory. The aim is to make a solution emerge‚ at

www.manaraa.com

160 Methodologies and Software Engineering for Agent Systems

Figure 8.1. ADELFE process is described in three levels: Work Definitions Activities
and Steps

the macro-level of the built MAS‚ from the interactions of independent parts at
the micro-level.

General requirements for this ETTO problem are the following. Stakehold-
ers are teachers‚ students groups and lecture rooms. Every actor individually
owns some constraints that must be (at best) fulfilled. A teacher has some con-
straints about his availabilities (e.g.‚ the days or the time slots during which
he can teach)‚ his capabilities (e.g.‚ the topics he can lecture on) and the needs
he has about particular pedagogic equipments (overhead projectors‚ video pro-
jectors‚ a defined lecture room for a practical work‚ etc.). A students group
must take a particular teaching made up of a certain number of time slots for
a certain number of teaching topics (X time slots for a topic 1‚ Y time slots
for a topic 2‚ etc.). A lecture room is equipped or not with specific equipments
(an overhead projector‚ a video projector or any equipment for practical works)
and can be occupied or not (e.g.‚ during a given time slot or on a certain day).

www.manaraa.com

The ADELFE Methodology 161

3. Preliminary Requirements

The aim of the preliminary requirements is to define the system to be and to
establish an agreement on the preliminary requirements.

The preliminary requirements work definition concerns the description of
the system and the environment in which the system will be deployed. It con-
sists in defining what to build or what is the most appropriate system for end-
users. End-users‚ clients‚ analysts and designers have to list the potential re-
quirements‚ to define the context in which the system will be deployed and to
list the functional and non-functional requirements (Activity #1 and #3). They
must agree on these requirements (Activity #2 and #3). Then‚ designers have
to define the main concepts used to describe the application and its domain (the
system and its environment) (Activity #4). And they must define the limits and
constraints of the system they have to build (Activity #5).

4. Final Requirements
The aim of the final requirements is to transform this view in a use-case

model‚ and to organize and to manage the requirements (functional or not) and
their priorities. In fact‚ at this stage‚ the designer has to define the function of
the studied system and to model its environment. To take into account adap-
tive MAS‚ four steps are added to the RUP process: three are in the Activity
#6 (Characterize environment) and one is in the Activity #7 (Determine Use
cases). The two last activities in this workflow relating to User Interface elab-
oration are not described here.

4.1 Characterization of the Environment
This activity (Activity #6 in Figure 8.1) is divided into three steps: deter-

mining the entities that are involved in the system‚ defining the context and
characterizing the environment. Entities to identify are active or passive enti-
ties in interaction with the system.

A detailed definition of the system environment is necessary to develop
adaptive systems‚ which are able to respond to any change. This step firstly
focuses on what may be in interaction with the studied system in terms of
passive or active entities‚ or constraints. In our example‚ teachers‚ students‚
the planning manager and the room manager are active entities because they
are able to change by themselves their own constraints or they can interact
with the system. Rooms are passive because they represent resources and they
cannot modify their characteristics by themselves. The NPP (or National Peda-
gogic Plan) is the database that contains all information concerning the courses
(maximum number of sessions per week‚ hour quotas for each formation‚ etc):
it is a passive entity.

www.manaraa.com

162 Methodologies and Software Engineering for Agent Systems

In a second time‚ this step must define the context of the system. It requires
a characterization of data streams and interactions between entities and the sys-
tem. Data streams between passive entities and the system are expressed using
collaboration diagrams. Interactions between active entities and the system are
expressed using sequence diagrams.

In our example‚ two kinds of data flows between the system and passive
entities exist: when the system consults the NPP and when the system consults
room constraints. When an active entity wants to interact with the system‚ it
may only have to change constraints (owner constraints or room constraints).
In the other sense‚ the system interacts with the active entity by displaying the
planning.

Finally‚ to characterize the environment‚ designers must think about the en-
vironment of the system to build in terms of being accessible or not‚ determin-
istic or not‚ dynamic or static and discrete or continuous. These terms have
been reused from (Russell and Norvig‚ 1995) and represent a help to later de-
termine if the AMAS technology is needed or not. This characterization may
enable the designer to detect some special use cases to respond to environment
behavior. In the case study‚ the environment of the system can be characterized
as follow:

Dynamic: the evolution of the active entities does not depend on the
system‚ they are unpredictable from the point of view of the system;

Accessible: the environment can obtain information on the state of the
environment;

Non-deterministic: the system is not able to know what could be the
effects of its actions on active entities; and

Continuous: the number of interactions between system and entities are
infinite.

4.2 Determination of the Use Cases

The main objective of this activity‚ which ends the requirements workflow‚ is
to clarify the different functionalities the system has to respond to. This activity
is divided into three steps which enable to design use cases‚ to elaborate the
associated sequence diagrams and to identify cooperation failures. Only active
entities are implied in these use cases‚ which are the results of a functional
requirements set. Identification of cooperation failures between the system and
its environment is realized in order to help designers to detect problems in the
sense of the AMAS theory: Non Cooperative Situations. This identification
will be refined during the development process and enables identification of
agents later in the process. The use cases for the timetabling problem are shown

www.manaraa.com

The ADELFE Methodology 163

Figure 8.2. The use cases for the ETTO problem. Associations to Visualize current result case
are potentially non cooperative: the result of the time tabling resolution is the only cause of
cooperation failure between the users and the system‚ in the sense that users expect the system
to satisfy their constraints

in Figure 8.2. Cooperation failures are represented on use cases diagrams by
dotted lines.

5. Analysis

From a multiagent point of view‚ the identification of agents must take place
in this workflow. The analysis work definition has to develop an understanding
of the system‚ its structure in terms of components and to know if the AMAS
theory is required.

5.1 Domain Analysis

Domain analysis (Activity #10) is a static view and an abstraction of the real
world and the linked entities. Considering separately each use-case by defining
scenarios‚ the designer has to divide the system into entities. The result of this
step is a set of entities in preliminary class diagrams. Teacher‚ CourseManager‚
StudentGroup‚ Room‚ RoomManager and NPP classes appear naturally as real
world entities. In a second time‚ we tried to determine what entities could be
useful for our system. A board is proposed to visualize the organization (Grid
and Cell classes) and the ConstraintManager class to control constraints for each
entity that owns a Constraint class instance. Cells represent intersections of
different dimensions (days‚ rooms‚ etc).

www.manaraa.com

164 Methodologies and Software Engineering for Agent Systems

5.2 Adequacy of the AMAS Theory

This activity (Activity #10 in Figure 8.1) aims to help the designer to de-
cide if the AMAS theory is adequate to solve his problem because‚ for certain
applications‚ this kind of programming can be useless. A software component
has been developed with several criteria to study the adequacy at two levels:

At the global level to answer the question “is a system implementation
using AMAS needed?”

At the local level to try to answer the question “do some components
need to be implemented as AMAS?” i.e.‚ is some decomposition or re-
cursion useful during design?

For the case study‚ the decision tool clearly suggests to use the AMAS to
design the global level. Moreover‚ the tool indicates that some entities could
be decomposed as AMAS. So‚ once the agents are identified‚ the designer has
to reuse the method on them‚ as developed below.

5.3 Agent Identification

In this activity (Activity #12)‚ we are only interested in agents that enable
a designer to build our sort of AMAS. The designer has to determine which
entities fit with this agent type: “cooperative agents.” A cooperative agent ig-
nores the global function of the system; it only pursues an individual objective
and tries to be permanently cooperative with other agents involved in the sys-
tem. The global function of the system is emerging (from the agent level to
the multiagent level) thanks to these cooperative interactions between agents.
An agent can also detect Non Cooperative Situations (NCS) that are situations
it judges as being harmful for the interactions it possesses with others‚ such as

Figure 8.3. The main class diagram for the ETTO problem. Three classes of agents appear: the
StudentsGroup‚ the Teacher and the BookingAgent. The two firsts are interface agents between
the system and the users. BookingAgents aim to reserve time slots (Cell of a Grid) and Rooms
for Teachers or StudentsGroups in terms of their Constraints

www.manaraa.com

The ADELFE Methodology 165

lack of understanding‚ ambiguity or uselessness. This does not mean that an
agent is altruistic or always helping other agents but it is just trying to have use-
ful (from its point of view) interactions with others. Thus‚ facing up to a NCS‚
an agent always acts to come back to a cooperative state. In fact‚ the behavior
of the collective compels the behavior of an agent. In ADELFE‚ designers are
given some guidelines: an entity can become an agent if it can be faced with
“cooperation failures” and may have evolutionary representations about itself‚
other entities or about its environment and/or may have evolutionary skills.
At this stage‚ we identify teachers and students groups as being cooperative
agents. All other entities are considered as objects.

5.4 Adequacy of the AMAS Theory at the Local Level

If the first step of adequacy to the AMAS theory indicates a possible de-
composition‚ each agent has to be analyzed as a system. The goals of an agent‚
Teacher or StudentGroup‚ are to find different places and partners to follow or
to give each course. These goals raise the problem of ubiquity. Agents cannot
be at different places at different moments. Therefore‚ we propose to create
one agent per course for each teacher or student group. Two agent levels are
distinguished:

RepresentativeAgent (RA): at the highest level‚ it represents a teacher or a
student group within the system;

BookingAgent (BA): at the lowest level‚ it is responsible for finding part-
ners and booking rooms for a RA. There are as many BA as the number
of courses a teacher has to give or a student group has to follow.

The identified agents have to be added to the preliminary class diagram as
shown in Figure 8.3.

6. Design

The design work definition aims to formulate models that focus on non func-
tional requirements and the solution domain and that prepare for the implemen-
tation and test of the system. In ADELFE‚ agents being identified and their
relationships being studied‚ designers have now to study the way in which
the agents are going to interact (Activity #15) thanks to protocol diagrams.
ADELFE also provides a model for designing cooperative agents (Activity
#16); designers must describe‚ for each type of agents‚ its skills‚ its aptitudes‚
its interaction language‚ its world representation and the Non Cooperative Situ-
ations this agent can encounter. The global function of a self-organizing system
is not coded; designers have only to code the local behavior of the parts com-
posing it. An activity of fast prototyping (Activity #17) based on finite state
machines has been added to the process. It enables designers to verify the be-

www.manaraa.com

166 Methodologies and Software Engineering for Agent Systems

Figure 8.4. An example of protocol diagram between two BookingAgents of two different
Teachers. The first agent explores the timetable grid to find satisfying slots and rooms. The
second one already occupies a room and a slot. This diagram explains the negotiation between
these two agents when the first agent meets the second agent. This negotiation may either result
on the leaving of the first agent or the booking‚ by the first agent‚ and the leaving of the second
agent

havior of the agents being built. Then designers have to complete the previous
defined class diagram (Activity #18). Once a class diagram enhanced‚ finalized
indeed‚ this diagram may require the development of a statechart diagram. The
aim is to highlight the different state changes of an entity when it is interacting
with others.

Because the complete design cannot be described in this chapter‚ we only
detail the agent design activity which does not exist in other methodologies.
Five steps compose this activity‚ the fourth one enables to endow an agent with
classical parts such as: skills‚ aptitudes‚ an interaction language and world
representations and the last one is more specific to AMAS theory.

6.1 Study of Interaction Languages
The result of this activity (Activity #15) is a set of protocol diagrams rep-

resenting the different interaction languages that may be used by the agents.
Figure 8.4 shows a sample protocol between two BookingAgents having two
different roles: ExploringTeacherAgent and OccupyingTeacherAgent. The AUML
– Agent Unified Modeling Language – (see chapter 12) notation is used but
some specific functionality has been added to AIP diagrams to fit to the AMAS
theory requirements. The decision-making process corresponding to an OR or

www.manaraa.com

The ADELFE Methodology 167

a XOR branch is done by an «aptitude»-stereotyped operation attached to the
branch-node (see later in this section). For example‚ in Figure 8.4‚ the isRoom-

Fitting operation is attached to the first XOR node; i.e.‚ depending on the results
of this operation‚ the ExploringTeacherAgent may either request for more infor-
mation before resuming its exploration of the grid‚ or negotiate in terms of the
constraints which agents own.

Once the set of protocols defined‚ designers may assign them to agents dur-
ing the new activity‚ as these are generic. Another possibility is to specify fully
generic protocols in which only roles are manipulated.

6.2 Agent Design
This activity helps the designer to fill in a generic architecture given for an

agent used in the AMAS theory. ADELFE is a method which is devoted to
a specific kind of agents: cooperative ones. Therefore‚ even if an agent still
follows the same defined life cycle – it gets perceptions from its environment
and autonomously uses them to decide what to do in order to reach its own
goal and‚ finally‚ acts to realize the action it has decided before – it has some
specific characteristics and is then composed of five parts that will constitute
its own behavior:

Skills that are knowledge about a domain enabling the agent to perform
actions.

Aptitudes which are the abilities an agent possesses to reason on its
knowledge (concerning the domain) or on its representation of the world.

An interaction language which enables the agent to interact and commu-
nicate with others in a direct or indirect (possibly‚ using its environment)
way.

Representations of the world that are knowledge used by an agent to
represent itself‚ other agents or its environment.

Non Cooperative Situations that an agent must detect and process be-
cause these situations are judged “harmful” for both the agent and its
viewpoint about the collective.

ADELFE Stereotypes. To enable the developer to deal with these spe-
cific components in the ADELFE methodology‚ nine stereotypes have been
defined to express how an agent is formed and/or how its behavior may be
expressed: «cooperative agent»‚ «Characteristic»‚ «perception»‚ «action»‚ «skill»‚

«aptitude»‚ «representation»‚ «interaction» and «cooperation».
In order to modify the semantics of classes and features depending on the

specificities of cooperative agents these stereotypes and their rules (written in

www.manaraa.com

168 Methodologies and Software Engineering for Agent Systems

OTScript language) are included in the OpenTool graphical tool linked with
ADELFE. All these stereotypes‚ except «cooperative agent»‚ can be applied to
attributes and/or methods. All the examples appearing in this section refer to
Figure 8.5.

The «cooperative agent» stereotype expresses that an entity is an agent which
has a cooperative attitude and can be used to build AMAS. An agent will be im-
plemented using a class that will be stereotyped with «cooperative agent». This
class must have a run method that simulates the agent’s life cycle. Therefore‚
to ensure that this method does exist‚ an agent inherits from a superclass called
CooperativeAgent. A sample associated coherency rule is: an agent-stereotyped
class inherits (directly or not) from the CooperativeAgent class. For example‚ in
the course timetabling application‚ BookingAgents (BA) have been identified to
represent teacher and/or student entities. A BA’s goal is to find convenient time
slots in the timetable. A BookingAgent class can then be defined and stereotyped
with «cooperative agent». This class inherits from the CooperativeAgent class and
therefore contains four methods: run‚ perceive‚ decide and act.

Figure 8.5. The two main «cooperative agent»-stereotyped classes: RepresentativeAgent and
BookingAgent. The first one can represent either a StudentGroup or a Teacher

www.manaraa.com

The ADELFE Methodology 169

The «Characteristic» stereotype is used to tag an intrinsic or physical property
of a cooperative agent. An attribute represents the value of a property. A
method modifies or updates the value of a property. A characteristic can be
accessed or called anytime during the life cycle. It can also be accessed or
called by other agents.

The «perception» stereotype expresses how an agent receive information
from the physical or social (other agents) environment. Attributes represent
data coming from the environment. Methods are means to update or mod-
ify «perception»-stereotyped attributes. A associated coherency rule is: “an
attribute stereotyped with «perception» is necessarily private.”

The «action» stereotype is used to signal how an agent acts on the envi-
ronment during its action phase. Methods are possible actions for an agent.
Attributes are parameters of an action. An agent is the only one that can use its
actions. A coherency rule associated is: “an attribute stereotyped with «action»

is private and a method that is stereotyped using «action» is private and can only
be called during the action phase of an agent.”

The «skill» stereotype is used to tag specific knowledge enabling an agent
to realize its own partial function. Methods represent reasoning an agent can
do. Attributes are data useful to act on the world or parameters of a «skill»-
stereotyped method. Such an attribute or method can only be accessed/affected
or called by the agent itself to express its autonomy of decision. Skills can be
represented by a MAS when they need to evolve. A coherency rule associ-
ated is: “an attribute or a method that is stereotyped with «skill» is necessarily
private. Such an attribute can only be used by a «skill»-stereotyped method.”

The «aptitude» stereotype expresses the ability of an agent to reason both
about knowledge and beliefs it owns. Methods express reasoning that an agent
is able to do. Attributes represent functioning data or parameters of reason-
ing. A method or an attribute which is stereotyped with «aptitude» can only
be accessed‚ or affected‚ or called by the agent itself‚ to express its autonomy.
Coherency rules associated are:

An attribute or a method that is stereotyped with «aptitude» is necessarily
private.

An «aptitude» attribute can only be used by a method that is also stereo-
typed with «aptitude».

A method that is stereotyped with «aptitude» can only be called during
the decision phase of the agent.

An «aptitude»-stereotyped method can only call methods or attributes
that are stereotyped with «perception»‚ «representation» or «interaction».

The «representation» stereotype is a means to indicate world representations
that are used by an agent to determine its behavior. Attributes are knowledge

www.manaraa.com

170 Methodologies and Software Engineering for Agent Systems

units describing an agent. Methods are means to handle representations: access
or alteration. Representations that may evolve can be expressed using a MAS.
Coherency rules associated are:

An attribute or a method which is stereotyped with «representation» is
necessarily private.

A «representation»-stereotyped attribute can only be used by a method
which is stereotyped with «representation» or «aptitude».

A «representation»-stereotyped method can only be called during the de-
cision phase of the agent.

The «interaction» stereotype tags tools that enable an agent to communicate
directly or not with others or with its environment. Methods express the ability
an agent owns to interact with others. Attributes represent functioning data or
parameters of an interaction. Interactions can be classified into two groups:
perceptions and actions which are also tagged with stereotypes («perception»

and «action»). A coherency rule associated is: a method stereotyped with «inter-

action» can only call methods stereotyped with «skill» or «interaction». Moreover‚
all the methods appearing on protocol diagrams are automatically stereotyped
«interaction».

The «cooperation» stereotype expresses that the social attitude of an agent is
implemented using rules allowing Non Cooperative Situations (NCS) solving.
An agent must have a set of rules (predicates) that enable it to detect NCS.
It must also have a method to enable it to solve NCS‚ this method associates
actions with situations in order to process them. A method that is stereotyped
with «cooperation» is always called during the decision phase of an agent and
can be of two kinds:

A method that returns a Boolean result and tries to detect a NCS; its
parameters are stereotyped with «perception»‚ «representation» or «skill»‚

A solving method (a priori‚ one per agent) that allows the association of
one or several solving actions with each NCS.

An associated coherency rule is: “a method stereotyped with «cooperation»

is private.”

Define Non Cooperative Situations. This step represents another contri-
bution of ADELFE to the design workflow. Rules which allow the agent to
have a cooperative attitude have to be defined: how to detect and to remove
NCS in order to be more cooperative. During it‚ designers must fill up a table
describing each NCS encountered by each previously identified agent. This
table contains:

www.manaraa.com

The ADELFE Methodology 171

The name of the NCS.

The state in which the agent is during the detection of NCS. This state
can be defined by a set of values of attributes or results of methods which
can be stereotyped as «perception»‚ «Characteristic» or «representation».

The textual description of the NCS.

The conditions describe the different elements that enable to locally de-
tect the NCS. Methods and attributes used to express conditions must be
stereotyped as «perception» or «representation» or «skill».

The actions linked to the NCS. The actions describe what the agent has
to do to remove this NCS. Methods and attributes used to express actions
must be stereotyped «action».

For each table‚ at least one «cooperation»-stereotyped method must be de-
fined. This method corresponds to the NCS detection and will be expressed
using the state and the conditions‚ i.e.‚ methods and attributes that are stereo-
typed as «perception»‚ «representation» or «Characteristic».

If several actions are possible to remove the detected NCS‚ you must define
another method to choose the action to do. This method is stereotyped as «co-
operation». If only one action is possible the definition of this second method is
useless: this action will be always executed. These methods will be integrated
in the behavior of the agent.

For instance‚ the NCS for a BookingAgent are:

Partnership incompetence: the BA meets another BA that may be an
uninteresting partner;

Booking incompetence: the BA is in a cell that is uninteresting to book;

Message unproductiveness: the BA receives a message that is not cor-
rectly addressed;

Partnership conflict: the BA meets another BA that is interesting‚ but
this other BA has already a partner;

Booking conflict: the BA is in a cell that is interesting to book but this
cell is already booked; and

Booking uselessness: the BA meets its partner: they must separate to
explore more efficiently the grid.

www.manaraa.com

172 Methodologies and Software Engineering for Agent Systems

7. ADELFE Tools
Within ADELFE‚ three tools are associated with the process and the UML /

AUML notations. The first tool is based on the OpenTool commercial software‚
enriched to take into account the development of adaptive MAS. The second
tool is an interactive tool which supports the process and helps designers to
follow the process and to execute associated tasks. The last tool is a support
decision tool to help designers to decide if the AMAS theory is relevant for the
current system to design. In this section we only present the two first tools.

7.1 OpenTool for ADELFE

OpenTool is a development tool‚ written in the OTScript language‚ which
is designed and distributed by TNI-Valiosys‚ one of the ADELFE partners.
On the one hand‚ OpenTool is a commercialized graphical tool like Rational
Rose and supports the UML notation to model applications while assuring that
the produced models are valid. More specifically‚ it focuses on analysis and
design of software written in Java. On the other hand‚ OpenTool enables meta-
modeling in order to design specific configurations. This latter feature has been
used to extend OpenTool to take into account the specificities of adaptive MAS
and thus include them into ADELFE.

The first modification added to OpenTool concerns the static view of the
model: the class diagram. Nine stereotypes are integrated to modify the se-
mantics of classes and features depending on the specificities of cooperative
agents.

As ADELFE reuses AUML to model interactions‚ OpenTool was enhanced
to support AIP diagrams. AIP diagrams are an extension to existing UML se-
quence diagrams that enables different message sending cardinalities (AND‚
OR or XOR). This second modification was enriched with the possibility to
easily attach a protocol to an agent class. Moreover‚ in order to simulate agents’
behaviors by using finite state machines‚ OpenTool can automatically generate
state-chart diagrams corresponding to protocols and roles within these proto-
cols.

7.2 Interactive Tools

ADELFE also provides an interactive tool that helps designers when fol-
lowing the process established in the method (Bernon et al.‚ 2003). In clas-
sical object-oriented or agent-oriented methods‚ this kind of tool does not re-
ally exist. Even if some tools linked with agent-oriented methods exist‚ e.g.‚
agentTool (DeLoach and Wood‚ 2001) (see chapter 6) for MaSE‚ PTK for
PASSI (Cossentino‚ 2001) or the INGENIAS tool (Gomez-Sanz and Fuentes‚
2002)‚ they are not really a guide and a verification tool for designers follow-

www.manaraa.com

The ADELFE Methodology 173

ing a methodological process. Generally‚ some guides like books or HTML
texts are given (e.g.‚ a guide to follow the RUP is available on the Web site
of Rational Software) but they are not really interactive tools able to follow
a project through the different activities of the process. The ADELFE inter-
active tool is linked both with a tool to verify the AMAS adequacy and with
OpenTool. It can communicate with OpenTool in order to access to different
diagrams as process progresses. For these two reasons‚ it can be considered as
a real guide that supports the notation adopted by the process and verifies the
project consistency.

Each activity or step of the process is described by this tool and exempli-
fied by applying it to the ETTO problem. Within the textual description or the
example‚ some AMAS theory specific terms can be attached to a glossary in
order to be explained. That is why the interactive tool is composed of several
interfaces. The “Manager” interface indicates for the different opened projects‚
the different activities and steps designers have to follow when applying the
methodology. The “Work Product” interface lists the work products that have
been produced or that have to be produced yet regarding the progress when
applying the methodology. The “Description” interface explains the different
stages (activities or steps) designers must follow to apply the methodology pro-
cess. The “Example” interface shows how the current stage has been applied to
ETTO. The optional “Synthesis” interface shows a global view and an abstract
of the already made activities. And finally the optional “Glossary” interface
explains the terms used in the methodology and defines the stereotypes that
have been added to UML.

8. Comparison with other Methodologies

ADELFE is based on object-oriented methodologies‚ follows the RUP (Ra-
tional Unified Process) and uses UML / AUML notations as MESSAGE (Caire
et al.‚ 2001 b) (see chapter 9). It covers the entire process of software engi-
neering like MESSAGE‚ PASSI and Tropos (Castro et al.‚ 2001) (see chap-
ter 5). And as DESIRE (Brazier et al.‚ 2000)‚ MASSIVE‚ PASSI‚ Prometheus
(see chapter 11)‚ INGENIAS/MESSAGE (Gomez-Sanz and Fuentes‚ 2002)‚
MaSE (DeLoach and Wood‚ 2001) (see chapter 6)‚ it provides modeling graph-
ical notations which are supported by tools. ADELFE is not a general-purpose
method such as Gaia (Wooldridge et al.‚ 1999) (see chapter 4) but it has a
niche‚ which concerns applications that require adaptive MAS design using
the AMAS theory. Therefore‚ like MESSAGE dedicated to telecoms applica-
tions‚ ADELFE gives guidelines for the identification of the application areas
for which adaptive systems technology is better suited than other technologies‚
e.g.‚ object-oriented technologies.

www.manaraa.com

174 Methodologies and Software Engineering for Agent Systems

Many other methods‚ like AAII (Kinny and Georgeff‚ 1996)‚ Tropos‚ MaSE
or MESSAGE‚ do not focus on the dynamic aspect of the software environ-
ment and on the adaptation abilities of the software. Tropos‚ like ADELFE‚ is
concerned by dynamics. It expresses the dynamics and openness of the appli-
cation in the requirements phases with the model of the environment and with
particular soft goals. However‚ it does not give guidelines to design the right
agents’ behavior allowing the adaptability of the system.

In adaptive MAS‚ the environment (in which the system is operating) is a
key notion; but in a general way‚ the environment modeling is not a central
point in existing methodologies. In DESIRE‚ the environment is taken into ac-
count at the agent level in the world interaction management module: an agent
maintains and interacts with its environment in the same way as with other
agents. In Tropos‚ the environment model is described in terms of actors‚ their
goals and interdependencies. In MESSAGE‚ the domain model captures some
entities of the system environment and the interactions with the environment
are described for each role in terms of sensory inputs and acquaintances‚ re-
sources ownership and accesses‚ and finally tasks and actions. In AAII‚ the
relation between the agent and the environment is taken into account in the
interaction model.

At the design level‚ some methodologies are dedicated to an agent architec-
ture as AAII with BDI‚ ADELFE with cooperative agents. In other method-
ologies such as Gaia‚ MESSAGE‚ Tropos‚ the architecture of the implemented
agents is not defined and it is quite open. Note that Tropos offers different
architecture styles (flat structure‚ pyramid‚ etc.) for its architectural design
phase.

In the analysis workflow of Gaia‚ the agents are already identified and the
methodology provides nothing to realize this identification. In Tropos the
agents are found inside the actors’ set. In AAII‚ the elaboration and refine-
ment of the agent model and the interaction model help the designer to define
agents. The agent definition‚ which is given in MESSAGE and in ADELFE‚
defines the features that will be ascribed to the entities that the developer will
choose to consider as agents.

9. Conclusion

The aim of this chapter was to present the ADELFE methodology which
is a multiagent-oriented methodology suited to adaptive MAS based on the
AMAS theory. ADELFE provides a new methodology to design a society of
agents exhibiting a coherent activity. The first prototype is now operational and
can be tested on the site http://www.irit.fr/ADELFE. Until now ADELFE
has been used or is used in several case studies: an Intranet system design‚ a

www.manaraa.com

The ADELFE Methodology 175

timetabling problem‚ a flood forecast system (in progress)‚ a mechanical design
system (in progress) and a bioinformatics system (in progress).

Acknowledgments
We would like to thank the support of the French Ministry of Economy‚

Finances and Industry as well as our partners: TNI-Valiosys Ltd.‚ ARTAL
Technologies Ltd.‚ the IRIT software engineering team‚ Carole Bernon and
Valérie Camps.

www.manaraa.com

Chapter 9

THE MESSAGE METHODOLOGY

Giovanni Caire, Wim Coulier, Francisco Garijo, Jorge Gómez-Sanz,
Juan Pavón, Paul Kearney and Philippe Massonet

Abstract This chapter presents MESSAGE, an innovative agent oriented software engi-
neering methodology, and it illustrates this methodology on an analysis and de-
sign case study. The methodology covers all phases of the software lifecycle, but
focuses on MAS analysis and high-level design. It is intended for use in main-
stream software engineering departments. MESSAGE integrates into a coher-
ent AOSE methodology some basic agent related concepts such as organization,
role, goal and task, that have so far been studied in isolation. The MESSAGE
notation extends the UML with agent knowledge level concepts, and provides
graphical notations for viewing them. The proposed diagrams extend UML class
and activity diagrams.

1. Introduction

Agent technology is one of the main topics in the area of modern telecom-
munication applications. But without a reasonable engineering methodology
for the development of agent based systems, professional development of these
applications is informal, cumbersome, error prone and thus expensive. MES-
SAGE is an AOSE methodology designed for use in mainstream software en-
gineering departments that develop complex distributed applications. MES-
SAGE consists of applicability guidelines, a modelling notation, and a pro-
cess for analysis and design of agent systems. It is a genuinely agent-oriented
methodology, but also builds upon the achievements of software engineering,
and is consistent with current best practices. MESSAGE attempts to unify the
best features of existing AOSE methodologies while grounding agent-oriented
concepts in the same underlying semantic framework that UML (OMG, 2000c)
uses, the standard modelling language in object oriented software engineering.
It extends the UML Class and Activity diagrams with agent oriented concepts
such as organization (Zambonelli et al., 2000), role (Kendall, 1998), goal (Dar-
denne et al., 1993) and task (Omicini, 2001). It also takes the Rational Unified

www.manaraa.com

178 Methodologies and Software Engineering for Agent Systems

Process (RUP) (Kruchten, 2000) as software development process, and defines
activities for identification and specification of MAS components in analysis
and design.

Work towards an AOSE methodology can be divided into two broad cate-
gories. The first category aims to apply existing software engineering method-
ologies to AOSE. Agent UML (AUML) (see chapter 12), for example, de-
fines extensions to UML with notations suited for agent concepts. AUML
has extended UML’s interaction diagrams to handle agent interaction proto-
cols. The second category of work aims at developing a methodology from
agent theory, mainly covering analysis and design. Typically these methodolo-
gies define a number of models for both analysis and design (Iglesias et al.,
1998a), such as Gaia (Wooldridge et al., 2000b) (see chapter 4) and MAS-
CommonKADS (Iglesias et al., 1998b). The Gaia methodology has two anal-
ysis models and three design models. MAS-CommonKADS has six models
for analysis, and three for design. While these models are comprehensive, the
process lacks a unifying semantic framework and notation. In addition to this
work, goal modelling techniques have been useful for structuring the rationale
behind a model (Dardenne et al., 1993).

This chapter presents an overview of MESSAGE. It illustrates its concepts
and development process with a case study going through the phases of analy-
sis, high-level and low-level design. Section 2 describes the MESSAGE mod-
elling language and process. Section 3 describes an analysis and high-level
design case study. Section 4 presents some design and implementation consid-
erations based on experimentation with MESSAGE. Section 5 contains some
reflections of the authors of MESSAGE about the methodology.

2. The MESSAGE Methodology

The MESSAGE methodology provides a graphical modelling language, a
development process, and guidelines on how to apply the methodology, that
cover at least the analysis and design phases. The methodology also explains
the relationship to implementation, testing and deployment phases (Caire et al.,
2001a).

2.1 The MESSAGE Modelling Language

MESSAGE is defined by means of the meta-modelling technique based on
MOF that is used to specify UML (OMG, 2000c). The MESSAGE mod-
elling language extends the basic UML concepts of Class and Association
with knowledge level agent centric concepts (Caire et al., 2001b). This sec-
tion presents the most important agent related concepts. They will be illus-
trated in section 3 in a case-study using graphical notations. The complete

www.manaraa.com

The MESSAGE Methodology 179

language definition is available at the official MESSAGE Web site http://

www.eurescom.de/Public/Projects/p900–series/P907/P907.htm.

Agent. An Agent is an atomic autonomous entity that is capable of per-
forming some (potentially) useful function. The functional capability is cap-
tured as the agent’s services. A service is the knowledge level analogue of
an object’s operation. The quality of autonomy means that an agent’s actions
are not solely dictated by external events or interactions, but also by its own
motivation. This motivation is captured as an attribute named purpose. The
purpose will, for example, influence whether an agent agrees to a request to
perform a service and also the way it provides the service.

Organization. An Organization is a group of Agents working together
to a common purpose. Its services are provided collectively by its constituent
agents. It has structure expressed through power relationships (e.g., superior-
subordinate relationships) between constituents, and behaviour/co-ordination
mechanisms expressed through Interactions between constituents.

Role. The distinction between Role and Agent is analogous to that between
Interface and (object) Class: a Role describes the external characteristics of
an Agent in a particular context. An Agent may be capable of playing several
roles, and multiple Agents may be able to play the same Role. Roles can also
be used as indirect references to Agents. This is useful in defining re-usable
patterns.

Goal. A Goal associates an Agent with a state. If a Goal instance is present
in the Agent’s working memory, then the Agent intends to bring about the state
referenced by the Goal.

Task. To express agent actions, MESSAGE uses activities. The main types
of activity are Task and Interaction. A Task is a knowledge-level unit of activity
with a single prime performer. A task has a set of pairs of Situations describing
pre- and post-conditions. If the Task is performed when a pre-condition is
valid, then one can expect the associated post-condition to hold when the Task
is completed. Composite Tasks can be expressed in terms of causally linked
sub-tasks (which may have different performers from the parent Task). Tasks
are StateMachines, so that, e.g., UML activity diagrams can be used to show
temporal dependencies of sub-tasks.

Interaction and InteractionProtocol. The MESSAGE concept of Interac-
tion is another type of activity and borrows heavily from the Gaia methodology
(see chapter 4). An Interaction by definition has more than one participant, and

www.manaraa.com

180 Methodologies and Software Engineering for Agent Systems

a purpose which the participants collectively must aim to achieve. The purpose
typically is to reach a consistent view of some aspect of the problem domain,
to agree terms of a service or to exchange to results of one or more services.
An InteractionProtocol defines a pattern of message exchange associated with
an Interaction.

2.2 MESSAGE Analysis Model and Views

A MESSAGE analysis model is a complex network of inter-related classes
and instances derived from concepts defined in the MESSAGE meta-model.
MESSAGE defines a number of views that focus on overlapping sub-sets of
entity and relationship concepts.

Five views have been defined to help the modeler focus on coherent subsets
of the modelling language:

Organization;

Goal/Task;

Agent/Role;

Interaction; and

Domain.

The Organization view shows concrete entities, i.e., Agents, Organizations,
Roles, Resources (such as databases and application services), in the system
and its environment and coarse-grained relationships between them (aggrega-
tion, power, and acquaintance relationships). The Goal/Task view shows a
detail of the goals that the Agents/Roles pursue and the tasks that they per-
form to reach them. The Agent/Role view focuses on the individual agents and
roles. This view describes their characteristics, such as what goals they are re-
sponsible for, what events they need to sense, what resources they control, the
behavior rules needed, etc. The Interaction view shows, for each interaction
among Agents/Roles, the initiator, the collaborators, the motivator (generally a
goal the initiator is responsible for), the relevant information supplied/achieved
by each participant, the events that trigger the interaction, and other relevant
effects of the interaction (e.g., an agent becoming responsible for a new goal).
Finally, the Domain view shows the domain specific concepts and relations
that are relevant for the system under development.

These five views may be graphically visualized through new diagram types:
Organization, Goal/Task, Delegation and Interaction, which extend the UML
Class diagram, and Workflow which extends the UML Activity diagram. They
are illustrated in the case-study below.

www.manaraa.com

The MESSAGE Methodology 181

2.3 MESSAGE Design Model
The MESSAGE Design Model refines the analysis model. It provides de-

tailed agent interaction constructs to describe inter-agent communication and
information exchange between agents and with their environment. The design
model also provides means (such as a facilitator or directory agent) whereby
the agent can identify other agents with which to communicate. The design
model also models the agent organization. This covers the capability of agents
to co-operate with other agents for problem solving. The Agent view of the
Design Model also describes the agent’s internal structure and behavior. The
internal design of the individual agents is described in terms of reusable com-
ponents. Constructs for describing basic agent concepts are defined: obser-
vation, action, communication, goals, plans, etc. These design concepts are
related to corresponding concepts in the analysis model, but address issues
about how these concepts should be implemented. MAS design also takes into
account platform choices and adherence to standards such as FIPA. Although
in principle high-level design should be independent of a specific platform,
design abstractions constrain designs to a specific family of platforms. The
MESSAGE design process is based on the selection for each agent of an agent
architecture, the refinement of the analysis model into a design model, and the
allocation of the model elements to the agent architecture (Caire et al., 2001b).

2.4 The Analysis and Design Process

MESSAGE has adopted the Rational Unified Process (RUP) (Kruchten,
2000) as its generic software engineering project life-cycle framework. MES-
SAGE focuses on the analysis and design activities. Both of these are mod-
elling activities: the main output of each is a model of the system at an appro-
priate level of abstraction.

The purpose of analysis is to produce a system specification (or analysis
model) that interprets the problem to be solved (i.e., the requirements) repre-
sented as an abstract model in order to (i) understand the problem better; (ii)
confirm that this is the right problem to solve (validation); and (iii) facilitate
design of the solution. It must therefore be related both to the statement of
requirements and to the design model (which is an abstract description of the
solution). MAS analysis focuses on defining the domain of discourse and de-
scribing the organizations involved in the MAS, their goals and the roles they
have defined to satisfy them. The high-level goals are decomposed and sat-
isfied in terms of services provided by roles. The interactions between roles
that are needed to satisfy the goals are also described. The analysis models are
produced by stepwise refinement.

In design, MESSAGE distinguishes between high-level design, which is
implementation independent, and low-level design that takes into account the

www.manaraa.com

182 Methodologies and Software Engineering for Agent Systems

specific constraints of a target agent platform such as the agent architecture
and the knowledge representations. In high-level design the analysis model
is refined by assigning roles to agents and by describing how the services are
provided in terms of tasks. The tasks can be decomposed into direct actions
on the agent’s internal representation of the environment, and communicative
actions to send and receive messages in interaction protocols. The interactions
between roles identified in analysis are detailed using interaction protocols.

The low-level design assumes that the developer is thinking about possible
implementations. This process implies considering different mappings from
high-level design concepts to computational elements provided by the target
development platforms. By computational we mean having an application
program interface with an externally known behavior. These elements may
already exist, e.g., as a software library, or will need to be developed from
scratch. Examples of both approaches will be shown later. Implementation
from the low-level design is not different from the implementation stage in a
common software development, so it will not be considered further.

In each stage, the developer needs to perform stepwise refinement of the
model. MESSAGE has defined for analysis some refinement strategies. To
structure the refinement, MESSAGE proposes levels of refinement. Different
levels are numbered starting with level 0. Each level starts with a set of ele-
ments which are modified using different refinement strategies. A level, then,
contains information about the system with an abstraction degree inversely
proportional to the number of the level.

Refinement Approach. Level 0 is concerned with defining the system to
be developed with respect to its stakeholders and environment. The system
appears as a set of organizations that interact with resources, actors, or other
organizations. Actors may be human users or other existing agents. Subse-
quent stages of refinement result in the creation of models at level 1, level 2
and so on.

At level 0 the modelling process starts building the Organization and the
Goal/Task views. These views then act as inputs to creating the Agent/Role
and the Domain Views. Finally the Interaction view is built using input from
the other models. The level 0 model gives an overall view of the system, its
environment, and its global functionality. The granularity of level 0 focuses
on the identification of entities and their relationships according to the meta-
model. The following levels determine the structure and the behavior of enti-
ties such as organization, agents, tasks, goals and domain entities. Additional
levels might be defined for analyzing specific aspects of the system dealing
with functional requirements and non functional requirements such as perfor-
mance, distribution, fault tolerance, security. Since each level expands con-
cepts appearing in previous levels, it is recommended to execute consistency

www.manaraa.com

The MESSAGE Methodology 183

checks periodically. In the following case-study only level 0 and level 1 are
illustrated.

3. Analysis/Design Travel Agent Case-Study

This section presents a case study developed to evaluate the methodology. It
contains diagrams extracted from internal documentation of the project. Partial
implementations of this case study are available from the official MESSAGE
Web site http://www.eurescom.de/Public/Projects/p900-series/P907/

P907.htm.

3.1 Travel Agent Case-Study Description
Context. A travel service provider (TSP) wants to improve its services by
helping its clients to obtain complete travel plans, including taxies, restaurants,
and so on. Travelling from one location to another involves creating a travel
plan with a tight schedule. It might involve taking a taxi from one’s home to
the airport, taking a flight to an intermediate location, taking a connection to
the final destination where a rented car has been booked and can be picked up
to drive to the hotel where reservations have been made. Unfortunately for the
traveller, many things can go wrong with a travel plan.

Requirements. Given the fact that many travellers will soon have wireless
terminals, the efficiency of the travelling process can be improved by develop-
ing a system (distributed both on these terminals and on the terrestrial network)
that:

Gathers travel requirements from the traveller;

Assists the traveller in identifying and arranging relevant travel services
offered by the travel service providers;

Assists the traveller with the booking of travel tickets; and

Monitors that the travel arrangement is carried out as planned by provid-
ing alerts and notifications of changes to arranged travels, and proposing
alternatives for unexpected changes in the schedule.

3.2 Level 0 Analysis

Organizations. Two diagrams from the level 0 organization view are re-
ported. Figure 9.1 describes structural relationships in a level 0 organization
diagram. The system to design is a Knowledge Management (KM) system,
which is considered a part of the TSP organization. The TSP already contains
some existing infrastructure, staff, and workflows. At level 0 the system under

www.manaraa.com

184 Methodologies and Software Engineering for Agent Systems

Figure 9.1. Level 0 Organization diagram (structural relationships)

development, i.e., the KM System, is seen itself as an organization that will be
analyzed at level 1. At this level of modelling only the global organizations are
modelled, not the individual software agents.

Figure 9.2 shows the acquaintance relationships in the level 0 organization
diagram. The KM system interacts with the System Administrator and the
Salesperson, and with the Travel Database to retrieve Travel Arrangements
and the Booking Database to insert the bookings requested by Salesperson on
behalf of Travellers. Moreover, it interacts with the Administrative Team to
prepare the bills that will be sent to travellers. A Salesperson interacts with
Travellers to gather Travel Requirements and provide Travel Arrangements. It
has to be noticed that the Salesperson does not interact directly with the Travel
Database and the Booking Database. All these interactions are carried out
through the KM system.

Goals/tasks. The Goal view shows how the main goals of the system are
structured into sub-goals (Dardenne et al., 1993). The level 0 goal view shows
the common goals that are pursued by the organizations that interact, as well
as their own. For example, Figure 9.5 shows that the main goal of the sys-
tem (Traveller Assisted) is satisfied when a Travel Arrangement (TA) for the
Travelling Requirements (TR) has been selected, and that the Traveller is noti-
fied of problems that will prevent the Travel Arrangement from being followed.
The TravelArrangementProvided goal is satisfied when the TR are known, TAs
have been provided by TSPs, the TA have been ranked, and a TA has been se-
lected by the Traveller. The decomposition of the NotifiedOfTravelProblems
goal is not shown.

www.manaraa.com

The MESSAGE Methodology 185

Figure 9.2. Level 0 Organization diagram (acquaintance relationships)

Figure 9.3. Level 0 Goal/Task Implication diagram

www.manaraa.com

186 Methodologies and Software Engineering for Agent Systems

Figure 9.4. Organizations, Roles and their interactions

Alternatively, or in conjunction with goal decomposition it is useful to an-
alyze how a given service is realized by a partially ordered set of tasks. An
example for level 1 is shown in Figure 9.9. The descriptions of workflows can
be refined as analysis/design progresses.

3.3 Level 1 Analysis

In this level, analysis focuses on the system itself identifying the main func-
tionality required (seen as roles and/or particular types of agents). The ap-
proach followed in this simple case study is to only consider roles during anal-
ysis and to defer the identification of agents and what roles they will play to
the beginning of the design process. However, the developer is free to start
identifying agents during analysis.

Organizations. In the final system, a Traveller, i.e., the user, will have to
interact with two roles: TA Gatherer which is responsible for gathering TAs
for a given TR, and TA Selector which is responsible for ranking the TAs that
best match the TR. Figure 9.4 shows these roles together with two other kind
of organizations which are already involved: the TSP and the Airline Company
(AC). The TA Gatherer role interacts with the TSP Assistant role of the TSP
to gather the TA. When the Traveller requests a Booking, the TSP Booking
Manager role interacts with the Airline Booking role of the airline company to
make the reservation in the Booking database, which is modelled as a resource.
These interactions will be described later in the high-level design section using
interaction protocols.

Goals, Roles and Services. Organizations have high-level goals that the
roles need to satisfy by providing and requesting services. Usually, the orga-

www.manaraa.com

The MESSAGE Methodology 187

Figure 9.5. Level 1 Delegation Structure diagram

nization goals are decomposed into simpler goals. For example, the Traveller
Assisted goal of the Traveller is partially satisfied by the goal TAGathered of
the TAGatherer role, and the goals BestTAIdentified and TASelected of the
TASelector role. These roles can satisfy those goals because they provide the
services TAGathering and BestTASelection. The roles responsible for satis-
fying the different goals appear in Figure 9.5. This information complements
that shown in workflow diagrams illustrated in Figure 9.9.

Figure 9.5 shows a delegation structure diagram. Only the root and the
leaves of the decomposition of the parent organization goal are shown. This
diagram is strictly related to (and must be consistent with) both the goal de-
composition diagram showing the decomposition of the organization goal and
the organization diagram showing the Agents/Roles inside the organization.
Information about what task execution to provide a service appear in workflow
diagrams. At the analysis level, this information is typically quite informal and
therefore free text is preferred to a graphical notation.

Interactions. This view highlights which, why, and when, Agents/Roles
need to communicate leaving all the details about how the communication
takes place to the design process. The interaction view is typically refined
through several iterations as long as new interactions are discovered. It can be
expressed by means of a number of interaction diagrams. Figure 9.6 shows
an interaction diagram describing the Travelling Request interaction between
the TAGatherer and the TSPAssistant roles. The details of the interaction pro-
tocol and the messages that are exchanged between roles can be represented
using AUML sequence diagram (see chapter 12) or any other notation that is
considered convenient.

www.manaraa.com

188 Methodologies and Software Engineering for Agent Systems

Figure 9.6. Interaction diagram

Domain. The domain can be conveniently described using UML class
diagrams to model the classes, their associations and their attributes, as shown
in Figure 9.7. A TR consists of a set of Transfer Requirements (TsR) that
specify an origin, a destination, and a time frame. A TA is composed of a
set of Transfer Arrangement (TsA) that refers to a Flight Occurrence (FO). A
FO refers to a flight from an origin to a destination on a specific date. A TA
matches a TR if each TsR is matched by a TsA.

3.4 Transition to a High-Level Design
This section shows how to refine an analysis model into a high-level design.

Four steps are proposed: identifying agents and assigning them roles, describ-
ing how services are provided with tasks, refining the analysis interactions in
terms of interaction protocols, and specifying the behavior of the interaction
protocols roles as statecharts.

Assigning Roles to Agents. Agents are identified based on the description
of the organizations and the use of some heuristics: on one extreme there can be
one agent for each organization, and is assigned all the roles in the multiagent
application. On the other extreme, there is one agent per role. In this case study
a Personal Travel Agent (PTA) was created for the Traveller, a TSP agent was
created for the TSP organization, and an Airline agent was created for the AC
organization. Figure 9.8 shows that for playing these two roles, the TSP agent
must provide the ProvideTAs service, manage the TR database, and access the
FlightDestinations database. It also uses services from the PTA, and the service
ProvideFlightAvailability.

Providing Service with Tasks. If any workflow diagrams have been de-
fined in the analysis phase they can be further refined in this stage. Once the
agents have been assigned roles, the services they need to provide are known.
For each agent it is necessary to show how the services will be provided in

www.manaraa.com

The MESSAGE Methodology 189

Figure 9.7. Travel domain

Figure 9.8. Agent diagram

www.manaraa.com

190 Methodologies and Software Engineering for Agent Systems

Figure 9.9. Task workflow

Figure 9.10. Partial Request Interaction protocol

terms of the tasks it is capable of. Figure 9.9 shows the workflow of tasks that
is needed for the PTA agent to provide the TA Selection service to the Trav-
eller. The input to the GetTAs task of the TSP Assistant role is a TR using
the object flow UML notation. The output is a set of TA that is sent to the TA
Gatherer role, which then passes them to the TA Selector role to rank them.

Interaction Protocols. This step involves refining the interactions iden-
tified in analysis. Interactions can be modelled in terms of interaction proto-
cols and UML state-charts. This modelling takes into account the interactions
between roles, the assignment of agents to roles, and the implementation of
services in terms of tasks, direct actions and communicative actions. Figure
9.10 shows how the interaction between the TSP BookingManager and the
AirlineBooking roles can be modelled as a FIPA-Request interaction protocol.
A TravelArrangement is passed as the content of the request message.

www.manaraa.com

The MESSAGE Methodology 191

Figure 9.11. TSP Booking Manager Role state chart

Interaction Role Behavior Specification. This step involves modelling
the behavior of the roles in an interaction protocol. Figure 9.11 shows how
the behavior of TSP Booking Manager role can be modelled during the FIPA-
Request protocol. In this case, when a booking request is refused or not un-
derstood, it is diagnosed and a decision is made to either cancel the request or
retry the request.

4. Considerations on Low-Level Design

Given a high-level MAS design model, low-level design needs to define
computational entities that can be implemented. This means translating the
entities in terms of subsystems, interfaces, classes, operation signatures, algo-
rithms, objects, and other computational concepts. Since there is no enough
space in the chapter to consider an in depth translation procedure, this section
will summarize the main results in this respect. The MESSAGE has experi-
mented with two complementary design approaches (Caire et al., 2001a).

The first design approach is driven by the MAS organization and an agent ar-
chitecture. It considers the agent as an entity that is more than a class: an agent
is seen as a subsystem, with an internal architecture that defines the relation-
ships of the different agent components. These components are computational
entities that are identified and built by transformation and stepwise refinement
from the analysis models. The behavior of some of these components (e.g.,
agent control) can be complex (e.g., defined using a BDI approach) or sim-
ple (e.g., in reactive agents). The design process is driven by the organization
model in order to assign responsibilities, to define agent interactions, and to
model social knowledge. The detailed design decisions that were applied in

www.manaraa.com

192 Methodologies and Software Engineering for Agent Systems

one of the case studies of MESSAGE have been presented in (Garijo et al,
2001).

The second approach is more agent-platform oriented, and considers that
each agent can be mapped to a class. This is mainly derived from the ap-
plication of most agent models supported by agent building tools, such as
JADE (Bellifemine et al., 2001) (see chapter 13) or FIPA-OS (Poslad et al.,
2000) in which there is one Agent class from which to derive the specific
agent type. This approach is valid when agents are simple in behavior and
can be modelled using a classical state machine approach, e.g., as in typical
object-oriented languages such as Java. The main concern here is how to or-
gandie agent interactions. An example of such implementation was published
in (Massonet et al., 2002).

4.1 Organization Driven Design
The Organization model defines the architectural framework for achieving

design activities. It provides a high level view of the system with all the ele-
ments needed for structuring their computational entities. Studying the orga-
nization, a developer discovers what are the goals to be satisfied and why an
agent decides to collaborate with others.

The organization itself may or may not be present as a computational el-
ement at the end of the design. An organization may be designed with an
agent architecture, or distributed among agents in form of social knowledge
(abilities of different roles and expected behavior), or appear in form of shared
resources, like resources to manage the list of members in a organization. In-
terfaces, tasks, and agent architectures are selected while studying organization
requirements. The organization view shows which roles need to interact, their
communication needs, and what social knowledge is required from each agent
in order to satisfy the system goals, i.e., organization goals. Individual realiza-
tion of tasks or service provision is easier to design as collective realization.
Once the organization has been modelled the developer can proceed with:

Selecting an agent architecture. Agents are designed as instantiations of
a specific kind of agent architecture, whose complexity depends on the
roles that have been assigned to the agents in the organization, and the
kind of relationships with other agents (e.g., whether interactions involve
complex protocols or not). In MESSAGE there have been experiments
with cognitive (BDI agents) and reactive architectures (state-machine
based agents).

Specifying agent’s behavior and interfaces. Conventional Software En-
gineering modelling techniques can help to detail internal agent architec-
ture behavior. For instance, sequence diagrams to clarify interactions,
activity diagrams to model the sequence of states reached by agents

www.manaraa.com

The MESSAGE Methodology 193

when performing tasks, and use cases to detail the expected function-
ality of the final system.

Defining agent’s social knowledge: this is defined using the structure and
the relationships of the Organization Model. It supports reasoning about
other agent’s actions, about the society itself, and social constraints upon
agent’s actions.

4.2 FIPA Platform Dependent Design/Implementation

A case study on the transition between a MESSAGE specification and FIPA
compliant agent toolkit was carried out with the JADE framework and the
JESS (Friedman-Hill, 2003) rule based system for reasoning (Massonet et al.,
2002). It focused on the translation between the implementation independent
MESSAGE analysis/design concepts and the implementation dependent JADE
detailed design/implementation concepts. It was illustrated on a subset of the
case study described in section 3, and showed how the high-level agent con-
cepts of the analysis and design modelling language could help structure the
agent implementation that is usually based on a simpler set of agent concepts.
High-level design decisions were easier to make with MESSAGE than at the
implementation level. The case study also showed, that because the develop-
ment tools have their own set of basic agent concepts, the translation process
is unique for every combination of methodology and development tool.

5. Evaluation of MESSAGE
The MESSAGE methodology was evaluated on two case studies Analysis

of a Universal Personal Assistant for Travel and an adaptive and decentralized
Customer Service Operations Support System application performing end-to-
end co-ordination within a customer service business process. A preliminary
evaluation concluded that MESSAGE showed promise, but the following is-
sues needed attention:

A clearer and more consistent semantics was needed for the basic entity
and relationship concepts in the modelling language, and particularly
those used in the diagrams.

A graphical notation distinguishing visually the fundamental MESSAGE
entities and relationships from the default UML ones was needed, plus
distinct diagram types focussing on particular aspects of the analysis
model.

A clearer process model and more specific guidelines were required to
give practical assistance to the developer.

www.manaraa.com

194 Methodologies and Software Engineering for Agent Systems

These issues were addressed in the final version of the methodology. The
design process was defined in parallel with the development case study, so that
the case study provided source material for the methodology rather than being
a test of it. Consequently, no explicit evaluation of the design process has been
performed. A subjective assessment based on reading the final methodology
is that the design process is at a similar stage of maturity as the initial version
of the analysis process. There are many useful ideas present derived from the
experience of the project partners, but they need to be marshalled so as to tell
a consistent and coherent story. Much of the design process represents a re-
finement of the corresponding elements of the analysis process. No additional
notation is introduced: a mixture of UML diagrams, MESSAGE analysis no-
tation and ad hoc notations are used. However, being able to perform a partial
implementation from the design information should be considered.

6. Conclusions

This chapter has presented the MESSAGE AOSE methodology and illus-
trated it on an analysis and design case study. The MESSAGE notation ex-
tends UML by contributing agent knowledge level concepts, and diagrams for
viewing them. The diagrams extend UML Class and Activity diagrams. The
methodology covers MAS analysis and design and is designed for use in main-
stream software engineering departments.

The case studies showed that the MESSAGE agent centered concepts proved
to be a sufficiently complete set of construction primitives for the case study
problems. Also, using the views of the system as building patterns helps de-
velopers obtain a more complete specification of the MAS. MESSAGE, as it
stands, is not a complete, mature agent-oriented methodology. It does, how-
ever, make some significant practical contributions to the state of the art (Gar-
ijo et al, 2001) that are likely to influence on-going initiatives in this area,
e.g., Agent UML (OMG, 2000c) (see chapter 12). In particular, the graph-
ical notation and the diagram set are practical concrete results that could be
taken up widely. These have been the basis for new proposals, such as INGE-
NIAS (Gomez-Sanz and Pavon, 2003), which refines the different meta-models
and adds more tool support, and RT-MESSAGE (Julian and Botti, 2004), with
extensions to deal with real-time constraints.

Acknowledgments

This work was supported by EURESCOM project P907. The editing of
this chapter was mainly supported by FEDER and the Walloon region under
contract Convention EP1A12030000012 number DGTRE 130023, and by the
Spanish Ministry for Science and Technology (TIC2002-04516-C03-03).

www.manaraa.com

Chapter 10

THE SADDE METHODOLOGY

Social Agents Design Driven by Equations

Carles Sierra, Jordi Sabater, Jaume Agusti and Pere Garcia

Abstract This work explores the existing gap between multi-agent specification and im-
plementation and the potential help that evolutionary programming techniques
can bring in. We present a methodology to help the programmer in the transition
from a set of desired global properties expressed as an equation-based model
that a MAS must fulfill to an actual society of interacting agents. The evolu-
tionary techniques are seen, within this methodology, as a procedure to tune the
parameters of the population of agents in order that their aggregated behaviour
maximally approaches the desired global properties.

1. Introduction
A fundamental difference between the ecologist and chemist and the soft-

ware engineer is that lions, gazelles and atoms already exist. They are natural.
Scientist do not need to design them. Their task consists on observing phe-
nomena and building a set of equations for which the observed reality is a
model. If the predictions of the equations and the reality do not match, the set
of equations is wrong. The scientist then refines the equations until predictions
and reality match. It works opposite to the methodological approach presented
here, as we hope to make clear by the end of it.

The general goal of the research reported here is to better understand the dy-
namics of large (artificial) MAS with globally distributed and interconnected
collections of human, software and hardware systems; each one of which with
potentially thousands of components.

To understand these dynamics we take a different stance than the traditional
emergent behaviour community. We focus our attention on the study of the
relationships between the a priory desired global behaviour of an agent society
and the actual emergent behaviour shown by the group of agents forming the
society. In a sense, we feel that in order to have a handle into the engineering

www.manaraa.com

196 Methodologies and Software Engineering for Agent Systems

Figure 10.1. SADDE Methodology

of complex systems we have to first specify the desired behaviour and second
find ways to restrict the potential complex interactions among agents in order
to foresee an emergent behaviour that does not depart substantially from what
is expected. Within this ambitious goal we present a methodology based on
three main ideas. First, a particular approach to the principled design of MAS
using Equation-Based Models (EBM, for short) as a high level specification
method, where equations model the aggregated behaviour of the agent popu-
lations abstracting from the interaction details of individual agents. Second,
the use of Electronic Institutions, as the way to restrict the interaction among
agents in order to be able to engineer the emergence. Third, the use of evolu-
tionary computation techniques to find out what agent structures produce the
behaviour specified in the EBM. These ideas frame our design methodology
called SADDE (Social Agents Design Driven by Equations).

2. The SADDE Methodology

We take the stance that in order to build a model for a society containing
thousands of agents, the general view provided by an EBM provides succinct
descriptions of population-level behaviours which we then attempt to replicate
using models consisting of a society of individual interacting agents. Our pro-
posed lifecycle is graphically depicted in Figure 10.1.

An important characteristic of MASs design from a software engineering
perspective is the decoupling of the interaction process between agents from
the deliberative/reactive activity in each agent (Ferber and Gutknecht, 1998).
The notion of electronic institution (Noriega and Sierra, 1999; Rodríguez et
al., 1998) plays this role in our methodology by establishing a framework that
constraints and enforces the acceptable behaviour of agents.

The different phases within SADDE are:

Step 1 EBM – Equation-Based Model. In this first step, a set of state vari-
ables and equations relating them must be identified. These equations

www.manaraa.com

The SADDE Methodology 197

have to model the desired global behaviour of the agent society and
will not contain references to individuals of that society. Typically these
variables will refer to values in the environment and to averages of pre-
dictions for observable variables of the agents. The EBM is the start-
ing point of the construction of a system that later on will be observed.
Thus, a comparison between the EBM predicted behaviour and the ac-
tual ABM behaviour will be obtained.

Step 2 EIM – Electronic Institution Model. In this step the interactions
among agents are the focus. It is a first “zoom in” of the methodol-
ogy from the global view towards the individual models. This step is
not a refinement of the EBM but the design of a set of social interac-
tion norms that are consistent with the relations established in Step 1.
The EBM does not necessarily reflect by itself the set of agent roles that
might generate the relations between the global variables. It is the task
of the engineer to determine which roles will be present at the level of
the society design by means of an electronic institution.

Electronic Institution restrict the interaction between agents in several
ways: enforcing protocols (when an to whom say what), restricting
movements of agents among activities (scenes) and by enforcing norms
that restrict the actions of agents. This restrictions permit to engineer
emergence to a certain level in the sense that agents are not completely
free to act.

Step 3 ABM – Agent-Based Model. Here, we focus in the individual. We
have to decide what decision models to use. This is the second “zoom
in” of the methodology. New elements of the requirement analysis (new
variables) will be taken into account here. For instance, some rationality
principles associated to agents (e.g., producers do not sell below pro-
duction costs), or negotiation models to be used, e.g., as those proposed
in (Sierra et al., 1997), have to be selected.

Step 4 Multiagent System. Finally, the last step of our methodology con-
sists on the design of experiments for the interaction of large numbers
of agents designed in the previous step. For each type of agent the num-
ber of individuals and the concrete setting for the parameters will be
the matter of decision here. The results of these experiments will de-
termine whether the requirements of the artificial society so constructed
have been consistently interpreted throughout the methodology and thus
whether the expected results according to the EBM are confirmed or not.

Once the experiments designed at Step 4 are run and analysed, several re-
designs are possible as shown schematically in Figure 10.1. The different for-
ward and backward processes of the methodology are:

www.manaraa.com

198 Methodologies and Software Engineering for Agent Systems

P1

P2

P3

P4

P5

P6

P7

Social Interaction Analysis. Once the EBM has been constructed, the re-
lations between the global variables and the analysis of the requirements
of the society to model will determine what sort of agents exist (i.e., the
roles), what sort of interactions the agents must have (i.e., the scenes),
and what sort of transactions or dialogs they will have (i.e., ontology).
This is an inherently manual process: there are many decisions to be
made at this stage that have not been specified in the EBM.

Individual Behaviour Analysis. Once a complete picture of the institu-
tion is ready, the final aspect to consider is the modeling of the behaviour
of the agents. Many aspects of this behaviour are already determined by
the institution. For those aspects that are not completely determined
the methodology strongly encourages the design of parametric decision
models to fill in the gaps. These parameters will be used to set different
experiments and will be the target of agent design rules.

Experiment Design. By choosing agents to participate with (possibly)
different decision mechanisms, and by giving concrete values to the pa-
rameters of those decision mechanisms, different experiments can be
constructed. The experiments should be set so as to explore all the pos-
sibilities and to see whether the EBM is making the right prognosis.

Experiment Analysis (ABM redesign). The analysis of the experiments
will be done by comparing the predicted values of the global variables
by the EBM and the actual values of agent variables and their averages.

Model Checking. The claims about the behaviour of a group of agents
that the developer establishes when specifying an experiment will be
model-checked at this stage. The outcome of the model checking will
help to change the agent-based models, i.e., change the decision-making
models.

Experiment Analysis (EI redesign). Additionally, when model checking
determines that certain properties can never be guaranteed or that after
several trials it is impossible to find parameter values that lead to the
expected correct behaviour, different constraints over the agents interac-
tions could be explored. This means that a redesign of the EI may be in
place. This is an intrinsically manual task.

Experiment Analysis (EBM redesign). Finally, and if everything fails, it
may happen that the part of the requirements that led to the initial EBM
was misunderstood and that a variation in the initial EBM is necessary
to explain why the experiments are showing unexpected behaviours.

www.manaraa.com

The SADDE Methodology 199

3. A Case Study: The Electricity Market

An electricity market is a special kind of market where participants trade
with power. It has three main components: producers, consumers and a net-
work that is responsible of distributing the power from producers to consumers.
This network has physical restrictions that makes necessary the presence of an
external entity, the system operator (SO), that tries to agree the offer and the
demand while maintaining the network into the safety operation limits.

Due to this characteristic, an electricity market always has two stages. In the
first stage, producers and consumers participate in one (or several) free markets
(explicitly forbidden for the system operator) in order to exchange power. After
this stage, there is another stage (that is performed just before the power traded
in the first stage has to be introduced into the net) where the system operator
analyzes the offer and the demand and detects possible problems for the net. If
problems are identified, the system operator has several mechanisms to avoid
or minimize them as much as possible.

In the following sections we will apply step by step the SADDE methodol-
ogy to this scenario.

4. Step 1: The EBM

In the EBM we have modelled the three main components of the electricity
market: generation, consumption and the electrical network system operator.

4.1 Power Generation
The power production has been modelled using three types of power sta-

tions: Thermic (coal-fired, gas-fired and fuel-fired), Nuclear and Hydroelec-
tric. The features of these power stations have been taken from the existing
ones in the Spanish electrical market during the year 2001. Hydraulic power
stations generated a 21% of the global power, Nuclear power stations a 35%
and Thermic power stations a 44%. Using these proportions as a reference
we can compute the power of each type of power station taking into account
that we want to obtain for our scenario a global power around 40000 MW. Con-
cretely in our scenario 9000 MW are generated using hydraulic power stations,
14000 MW using nuclear power stations and 18000 MW using thermic power
stations.

In the EBM, we will have a single entity that models the energy production
for each type of power station: hydraulic, nuclear and thermic.

Decision Modules. Each power generation entity in the EBM (Hydraulic,
Nuclear and Thermic) uses a decision module to control the increase or de-
crease of power production from time t to time t + 1 taking into account the
following criteria:

www.manaraa.com

200 Methodologies and Software Engineering for Agent Systems

The changes of power demand between time t – 2, t – 1 and t using the
following function:

where var2 is the increase or decrease of power consumption between t–
1 and t, var3 is the increase or decrease of power consumption between
t – 2 and t – 1 and var4 = var2 – var3.

The performance, EnergyProd(t)/MaxN, of a power generation entity at
time t in comparison to TotalDemand(t)/41000, the global performance
of the system with a performance limit of a 70%

Every power generation entity have to produce spear energy (i.e., Re-
serve(t+1)) to avoid possible power shortages.

This spear energy production changes during the day following the func-
tion:

The technical features associated to the method used to generate the
power.

where MaxI is the maximum power increase per hour and MaxD is the
maximum power decrease per hour.

Depending on the method used to produce the energy, these constants
have the following values:

TYPE of POWER STATION
Hydraulic
Nuclear
Thermic

MaxN
9000

14000
18000

MaxI
5000
3000
6000

MaxD
-5000
-2000
-4000

www.manaraa.com

The SADDE Methodology 201

Figure 10.2. Example of demand on a labour day and a Saturday

So, the power produced by a power generation entity at time t + 1 will
be:

Notice that in this decision process we have not used at all the possible future
demand of power.

4.2 Modelling the Demand

The demand has been modelled using as a reference the power consumption
in Spain every hour during year 2001. The data has been taken from the “Red
Electrica Española” which controls the electrical power distribution in Spain
(see http://www.ree.es).

It can be observed that power consumption follows four different patterns:
labour day, Saturday, Sunday and holidays. For example, Figure 10.2 shows
the demand on a labour day and on a Saturday,

Using these four patterns we can simulate the demand of energy every hour.
The demand for a week is computed using five working days + Saturday +
Sunday and we substitute randomly (with a probability of 1/15) one of those
days by a holiday.

Once decided which consumption pattern we will follow a specific day, to
compute the demand of energy at time t we use the following formula:

where ConsPattern(t) is the consumption at time t given the consumption
pattern for that day (ConsPattern), rand(–250,250) is a uniformly distributed
random variable and allows us to model the variations in
the consumption during the different seasons of the year with a variability over
the basic pattern of ±20%.

www.manaraa.com

202 Methodologies and Software Engineering for Agent Systems

4.3 The Electrical Network System Operator
The system operator mediates between the producers and the consumers

and also has authority to force producers to modify their production in order to
satisfy the requirements of quality and security. In the EBM it distributes the
demand among the producers using the following sequential procedure:

If the produced power is less or equal than the demand then the system
operator takes all the power production from each power station.

If the production is bigger than the demand then:

Distributes this demand among producers inverse proportion to the
current performance of each power generation entity (where the
performance is the ratio between the current production and the
maximum capacity of a power generation entity).
If there is still demand to be satisfied, then this demand is dis-
tributed in direct proportion to the spear power of each power gen-
eration entity.

1

2

This method minimizes for each power generation entity the difference be-
tween current and maximum capacity of production.

To plan the next step of production the power generation entities take into
account the deficit or overproduction of the previous step as was explained in
the previous section.

Notice that, in our model, producers decide about their own production and
the system operator is responsible only of the demand distribution.

4.4 Power Cost

The prize of the power consumed is the total cost of the power produced
including overproduction (that is, lost power that has not been consumed).

In the cost of production there is a maintenance cost (that do not depends
on the quantity of power produced) plus the cost to produce each unit of power
(GenerationCost).

We use Euros for cost and MWh for power production.
Our EBM uses the following costs:

TYPE

Hydraulic
Nuclear
Thermic

Maintenance cost
(per hour)

72000
224000
180000

Generation cost
(per MWh)

16
13
20

This costs have been obtained using the average cost of electrical power in
Spain during year 2002 which is 38.91.

www.manaraa.com

The SADDE Methodology 203

4.5 The EBM in Action

The properties that must fulfill the EBM are:

That the deficit of power be punctual; and

That the deficit of power never be greater than a 10% of the total produc-
tion, which is the obliged reserve of power that each power generation
entity must fulfill.

In the designed EBM, the average cost is 39.16 Euros/MWh that is very close
to the real cost (38.91). The power lose (power that is produced but it is not
consumed), is less than 8% of the total power consumed and the power deficits
are punctual and never greater than 5%. Given these results we can say that the
designed EBM fulfills our requirements.

5. Step 2: The Electronic Institution
The second step in the SADDE methodology consists on the design of an

electronic institution that fixes a set of social interaction norms that are consis-
tent with the relations established in Step 1.

The power electricity market we present in this section relies on a New Elec-
tricity Trading Arrangements (NETA) proposal presented the October 2000 in
the United Kingdom1.

Roles. There are three roles that an agent can play in the electricity market:

PRODUCERS: Electricity producers that generate electricity using a dif-
ferent configuration of Power Stations. Power stations are expensive
physical plants with a range of physical characteristics and running cost
profiles.

CONSUMERS: large industrial processes and local power distribution
utilities.

SYSTEM OPERATOR (SO): the operator of the energy transmission
system, who is responsible for maintaining the supply voltage and sys-
tem stability (preventing thermal overload and oscillation in flows - dy-
namic security).

The Markets. The electricity market is organized, in his turn, in several
markets: the primary market, the secondary market and the balancing market.
Finally there is a settlement stage.

1The Spanish protocol is not yet available so we use the English model that is similar to what the Spanish
market is expected to be.

www.manaraa.com

204 Methodologies and Software Engineering for Agent Systems

PRIMARY MARKET: There are periodic auctions (in our case every
hour) of transmission rights, in the form of tickets valid for the injection
or extraction of energy for an hour period. The auction protocol has not
been specified, although a double auction seems likely. It is explicitly
stated that the offer is greater than the demand.

SECONDARY MARKET: Once the primary market for a specific pe-
riod has been closed, the arrangements refer to the existence of an unfa-
cilitated secondary market for the trading of transmission tickets. This
market lasts until few minutes before the ticket becomes due. This time
is known as “gate closure.” The objective for consumers and produc-
ers is to ensure they hold almost exactly the right number of tickets for
each period of time to correspond to planned generation or expected con-
sumption. For this market we propose a one to one negotiation mecha-
nism as the procedure to exchange tickets.

BALANCING MARKET: This market exists to permit the SO to main-
tain the voltage level and dynamic security. This market is performed
once the secondary market closes. Based on its analysis of the trans-
mission network and the flows as identified by tickets held, the SO can
identify shortfalls or excesses of energy that will arise during the ticket
window. The actions available to it are: (i) to dispatch additional gener-
ation; and (ii) to back-off scheduled generation.

SETTLEMENT: in this stage consumers pay producers for the energy
consumed.

These markets should run in parallel, that is, while in the primary market peo-
ple is buying tickets for period T, in the secondary market they are negotiating
tickets for period T’ (where T’ > T) and so on. However, to simplify, in our
scenario we will consider a sequential order. Only one market is open at a time
and they are opened sequentially. After the SETTLEMENT stage the cycle
starts again with the PRIMARY MARKET.

5.1 ISLANDER Specification

An electronic institution model is based on four elements: dialogic frame-
work, scenes, performative structure and norms. The dialogic framework de-
fines the valid illocutions that agents can exchange and which are the partic-
ipant roles. The institution activity is defined in the performative structure
based on the notion of scene. A scene defines a conversation protocol for a
group of roles that can be multiply instantiated by different groups of agents
playing those roles. Note that all the interactions between participating agents
take place within the context of a scene. Thus, a performative structure defines

www.manaraa.com

The SADDE Methodology 205

which are the institution scenes (conversations) and how agents, depending on
their role and their past actions, can move among them. Finally, norms define
the consequences that agents’ actions within scenes will have in the future,
expressed as obligations.

To illustrate how the electronic institution for the electricity market can be
specified using ISLANDER we will show the scene that corresponds to the
secondary market. In addition to that, the performative structure of the insti-
tution has a scene for the primary market, a scene for the balancing market
and two more scenes (the root and the output scenes) that allow agents enter
and leave the institution. Figure 10.3 shows a graphical representation using
ISLANDER of the secondary market scene.

Figure 10.3. The secondary market scene

5.2 Specifying the Secondary Market Scene
Three different roles participate in the secondary market scene:

SMMgr: The secondary market manager. Only one agent playing this role
can enter into the scene.

producer: A power producer.

consumer: A power consumer.

The secondary market scene contains five states, the W0 state is the initial, and
it is in this state where all the participating agents enter into the scene. When

www.manaraa.com

206 Methodologies and Software Engineering for Agent Systems

all the agents are in the scene the SMMgr agent sends the (1) illocution to jump
to the W1 state where the negotiation between consumers and producers will
be performed. When the SMMgr decides that the secondary market must be
finished he sends the illocution (8) to inform that the market will be closed.
After launching this illocution, the scene jumps to the W4 state where all the
agents leave the scene.

In W1, W2 and W3 states it is performed the negotiation between consumers
and producers. When the scene arrives to the W1, each producer can start a
negotiation process with a consumer sending an illocution (2) and jumping to
the W2 state. In this illocution the agent informs to the consumer about the
quantity and price of the offer. At this state the consumer agent can do three
actions:

Withdraw the offer: illocution (3);

Accept the offer: illocution (4); or

Generate a counter-offer: illocution (5).

1

2

3

If the consumer generates a counter-offer, the scene jumps to the W3 state,
where the producer can accept the last offer, cancel the negotiation, or make a
new offer: illocutions 6, 7 and 9 respectively.

id
1

2

3

4

5

6

7

8

9

illocution
(inform (?x SMMgr) (all all)
start-secondary_market())
(inform (?p producer) (?c consumer)
offer(?quantity ?price))
(inform (!c consumer) (!p producer)
withdraw())
(inform (!c consumer) (!p producer)
accept(!quantity !price))
(inform (!c consumer) (!p producer)
offer(?quantity ?price))
(inform (!p producer) (!c consumer)
accept(!quantity !price))
(inform (!p producer) (!c consumer)
withdraw())
(inform (!x SMMgr) (all all)
end-secondary_market())
(inform (!p producer) (!c consumer)
offer(?quantity ?price))

illocution constrains

(?quantity > 0
?price > 0)

(?quantity > 0
?price > 0)

(?quantity > 0
?price > 0)

The rest of the scenes that compound the performative structure are specified
in a similar way.

6. Step 3: The ABM

The third step in the methodology consists on the specification of the deci-
sion making for the agents that will populate the electronic institution specified
in the previous step. As we have said there are three types of agents that partic-

www.manaraa.com

The SADDE Methodology 207

ipate in an electricity market: producers, consumers and the system operator.
In the following sections we will describe each one of them.

6.1 Producers

Producers, as the name suggests, are responsible of generating the energy.
In our example, energy can be generated using three different mechanisms: hy-
droelectric power stations, nuclear power stations and thermic power stations.
Each type of power station is defined by four parameters:

PowerUp: this parameter determines how much can be increased the
production in this type of power station per time unit (in our case, one
hour). This is a maximum and it is always conditioned to the total capac-
ity of each concrete power station. For example, consider a power station
that has a maximum production capacity of 800MW and the PowerUp
for that kind of power stations is 200MW. If at time t that power station
is producing 300MW it means that at time t + 1 it can generate no more
than 500MW.

PowerDown: the same meaning that the PowerUp parameter but associ-
ated to the decrease of production.

Cf: cost per MW to maintain operative that kind of power station. To
obtain the total cost for a concrete power station you have to multiply this
value and the maximum production capacity. This cost is independent
of the current production.

CMW: how much it cost to generate a MW in that type of power station.

Each producer generates the energy using a different configuration of power
stations. For example, you can have a producer that generates a 50% of the
energy using nuclear power stations, a 30% using thermic power stations and
a 20% using hydroelectric power stations. Taking into account this configura-
tion and the parameters associated to each type of power station it is possible to
calculate the capacity that has a given producer to increase or decrease the pro-
duction per time unit (that is, the capacity to react to variations in the demand)
and the cost of the produced energy.

In order to participate in the electricity market presented in section 5, a
producer has to make decisions about three aspects:

The amount of energy that will be generated during the next hour.

The price and quantity of the energy offered in the double auction of the
primary market.

The negotiation process in the secondary market.

www.manaraa.com

208 Methodologies and Software Engineering for Agent Systems

To decide the amount of energy to be generated during the next hour as well
as the price to participate in the double auction of the next primary market, the
producer uses a simple heuristic based on the result of its participation in the
previous primary market. If in the previous round of the primary market the
producer was able to sell the generated energy, then it will increase the produc-
tion of each power station a quantity equal to PowerUp and will increase the
price of the energy, otherwise it will decrease the production of each power sta-
tion a quantity equal to PowerDown and will decrease the price of the energy.
Concretely, producers use the following equations:

where is the quantity produced at time t and lastSold a flag that indicates
if the producer was able to sell the produced energy the previous round of the
primary market.

where Production-cost is the cost to generate the energy (selling below that
price means the producer is losing money), is the price that will be
uttered in the primary market at time t and is the price that was paid
in the primary market at time t – 1. lastSold has the same meaning that in the
previous formula and and are two constants particular to each producer.

Besides the energy it has decided to generate, the producer is obliged to
generate always an extra amount of energy equal to the 10% of its maximum
capacity. This energy cannot be sold in the primary and secondary markets and
has to be available to the system operator in order to balance the market if it
was necessary as we will show in section 6.3.

A producer always offers in the primary market all the energy that it has
decided to generate

In order to simplify the analysis of the results, the negotiation process of the
secondary market has been reduced to a double auction between two partici-
pants. The price uttered by the producer is a constant that is particular to each
producer and the quantity is always equal to the amount of energy that was not
sold in the primary market. This constant together with and the con-
figuration of power stations are the set of parameters that define a producer’s
behaviour.

www.manaraa.com

The SADDE Methodology 209

6.2 Consumers

The consumers that participate in an electricity market are companies that
make a big consumption of energy, and energy wholesalers that later will sell
the energy to smaller consumers.

Given the electronic institution presented in section 5, a consumer has to
make decisions about three aspects:

The demand of energy for the next hour.

The offer to be uttered in the next double auction of the primary market.

The negotiation process in the secondary market.

The demand of energy is modelled using real data. This data and the algorithm
to generate the demand are the same that are used in the EBM model. Once
determined the demand for the next hour, this demand is distributed equitably
among all the consumers. Then, each consumer individually will try to cover
that demand.

The strategy to participate in the double auction in the primary market is
very similar to the one used by producers. The price is determined by the
formula:

where is the price that will be uttered in the primary market at time t,
is the price that was paid in the primary market at time t–1, lastBought

is a flag that indicates if the consumer was able to buy in the previous round
of the primary market and and are two constants particular to each con-
sumer. The quantity of energy requested is equal to the demand for the next
hour.

As we have explained for producers, the negotiation process of the sec-
ondary market has been reduced to a double auction between a single producer
and a single consumer. The price uttered by the consumer is again a constant
that is particular to each consumer, and the quantity is always equal to the
amount of energy that the consumer still requires to fulfill the demand after the
primary market.

The price of the offer in the secondary market and the constants and
are the parameters that define a consumer’s behaviour.

6.3 System Operator

The task of the SO is to maintain the voltage level and dynamic security
of the electricity network. Based on its analysis of the results in the primary

www.manaraa.com

210 Methodologies and Software Engineering for Agent Systems

and secondary markets, the SO can identify future shortfalls or excesses of
energy and try to avoid them. After analyzing the situation after the primary
and secondary markets there are several possibilities:

The demand has been covered in the primary and secondary markets.
The system operator notifies to the producers with energy that was not
sold in the primary and secondary markets that they have to disconnect
their power stations from the network. This measure is to avoid an over-
load that could be dangerous for the integrity of the network.

There is some demand that was not covered after the primary and sec-
ondary markets. First, the system operator tries to cover the demand with
the energy that will be generated but that was not sold in the primary
and secondary markets. If after that there is still demand to be covered,
the system operator uses the 10% of extra energy that each producer is
obliged to generate specially for these occasions.

The price that will be paid for the energy assigned by the system operator is
the average cost of all the energy that is going to be generated by producers
(including the energy that has not been sold).

7. Step 4: Multiagent System

The final step is to build the MAS that implements the electronic institution
presented in section 5 and it is populated by instances of the agents presented
in section 6.

In our experiments we do not have real agents running in parallel and ex-
changing messages through a communication platform. Instead, agents are
implemented as C++ classes and the exchange of messages is done through
method calling. This allows us to run the experiments very fast without com-
promising the validity of the obtained results.

8. Cycle P4 through Evolutionary Computing

To explore the different configurations of agent instances to build the MAS
and to find which of those configurations satisfy the requirements fixed by the
EBM in the first step of the methodology, we propose the use of evolution-
ary computing. In the following sections we will explain in detail how this
approach is applied in the electricity market scenario.

8.1 Gens and Chromosomes

A MAS is fully specified by a chromosome. Each gene of that chromo-
some contains the information that defines an agent. In the electricity market

www.manaraa.com

The SADDE Methodology 211

Figure 10.4. A chromosome for the electricity market

scenario there are two types of agents that we want to explore: producers and
consumers.

As we have said there are five parameters that specify a producer:

The configuration of power stations that determines how the producer
generates the energy. There are three parameters, each one represent-
ing the different types of power stations: Hydroelectric noted as
Nuclear noted as and Thermic noted as

and that define the strategy of the producer to fix the prices in the
double auction (primary market).

The negotiation price, noted as NP, that defines the price the producer
will offer in the secondary market.

and three parameters that specify a consumer:

and that define the strategy of the consumer to fix the prices in the
double auction (primary market).

The negotiation price, noted as NP, that defines the price the consumer
will offer in the secondary market.

To simplify the genetic operations (mutation, crossover, etc.) we have unified
the length of the genes in the chromosome. Parameters and are
used also to represent a consumer but only for syntactical reasons and they are
always are equal to 0. Figure 10.4 shows a chromosome codifying a MAS for
the electricity market.

It is important that the genes of the chromosome fulfill the following restric-
tion:

www.manaraa.com

212 Methodologies and Software Engineering for Agent Systems

where n is the number of genes. To achieve that, we have to normalize these
parameters in the chromosome after applying every genetic operator.

8.2 Fitness Functions
We use the aggregation of three different functions to evaluate the fitness of

an individual (MAS):

1

This function computes how near is the average cost of the electricity
produced in the MAS (AvABM) with the average cost of the electricity
we have calculated using the EBM (AvEBM). The ac function is defined
as:

2

This function computes the percentage of power deficit relative to the
total production. The ed function is defined as:

3

This function evaluates the power lost in our model (power that is pro-
duced but is not consumed). The pl function is defined as:

The formula to compute the fitness function is:

www.manaraa.com

The SADDE Methodology 213

Figure 10.5. Parameters for the genetic algorithm

8.3 Description of the Experiments
The aim of the experiments is to find a MAS that converges with the EBM

in three aspects:

The average price of the electricity in the market during the analyzed pe-
riod. We have analyzed the market using the EBM during 720 iterations
(equivalent to one month) and the average price obtained was 39.16.
This is the value that we want to achieve using the ABM.

The percentage of demand, relative to produced energy, that cannot be
fulfilled. Here we will not tolerate a percentage greater than 5%.

The percentage of power relative to the total production that is lost (i.e.,
power that is generated but it is not consumed). In the EBM we found
that the amount of power produced that is not consumed was about an
8%.

The general parameters of this experiments are shown in Figure 10.5. The ter-
mination condition imposed to the genetic algorithm is that the best individual
of the population have to fulfill the following conditions:

The average fitness after 15 executions of this individual must be greater
than fitnessThr.

The minimum fitness after this 15 executions must be greater than mini-
mumFit.

This restrictions guarantee that the individuals are good and robust enough.
EupProd and EdownProd are the possible range for parameters and

respectively in the case of producers and EupCon and and EdownCon are the
possible range for parameters and respectively in the case of consumers
(see section 6.1 and section 6.2).

www.manaraa.com

214 Methodologies and Software Engineering for Agent Systems

Figure 10.6. Parameters for the MAS

NegoProd is the possible range for the negotiation price in the secondary
market for producers and NegoCon is the possible range for the negotiation
price in the secondary market for consumers.

Each electricity market session implies the execution of the primary market,
the secondary market and the balancing market plus the settlement of the ex-
changed tickets (generation and payment of the energy). Because this happens
every hour, by running 720 sessions we are simulating one month (720 / 24 =
30).

The fitness function used in these experiments is the one presented in sec-
tion 8.2, that is:

where f1 computes how near is the average cost of the electricity produced
in the MAS, f2 computes the percentage of power deficit relative to the total
production and f3 evaluates the power that is produced but is not consumed.

8.4 Results

In all the experiments, after about 20 generations the genetic algorithm was
able to find an individual that fulfilled the requirements established by the EBM
and described in previous sections.

9. Conclusions

EBM and ABM are two well known styles of computer based modeling.
EBM has a long tradition and a selection of friendly tools, ABM is a more
recent but a powerful approach. EBM allows the modeling of the global be-
haviour of a population leaving implicit the behaviour and interaction of in-

www.manaraa.com

The SADDE Methodology 215

dividuals. On the other hand in ABM we model explicitly these individuals
and their interactions leaving the global behavior of the population as an emer-
gent result. There are numerous applications of each of these approaches (Ro-
dríguez et al., 1998; Ruth and Hannon, 1997). They have even been applied
to the same problem in order to establish comparative criteria about their al-
ternative use (Parunak et al., 1998a). This competing view between EBM and
ABM makes sense if you have a real system against which the model you build
should be checked. However if the goal is to build an artificial system whose
behavior is to be inspired by a real system but not bound to simulate it faith-
fully, then the reasonable attitude is to take EBM and ABM as complementary
approaches to be used at different levels of abstraction in the design lifecycle.

We have integrated both approaches into a methodology for MAS design
and implementation. More specifically we have used EBM to identify desired
global properties of the MAS. Then we analyzed how the flows of the EBM
could be produced by the interactions between different types of agent. The
structure of the EBM guides the definition of these interactions through an
electronic institution. We then decide on the agent model we expect that will
allow populations whose aggregate behavior will meet the EBM. Finally, the
model parameters become the genes of agents in the MAS when exploring the
space of models using evolutionary computing.

The application of evolutionary programming to MAS redesign brings us
several preliminary results.

The chosen agent model allows the convergence of the evolutionary pro-
cess towards the production of a stable collection of MASs showing the
EBM specified properties to an acceptable degree. This is so in a huge
search space. This shows that the choice of GAs as a basic technique for
SADDE is justified.

We found that once a good ABM model is engineered to match the be-
haviour predicted by the EBM, it is not easy to populate a MAS by fixing
the agent parameters. Initial populations with randomly fixed parame-
ters show a very bad global behaviour. This can be due to the fact the
the ABM model does not impose enough constraints on the behaviour of
agents and therefore the space contains big areas where the behaviour is
not good enough.

According to several robustness experiment we see that once a stable
population is found up to a 20% random changes in the individuals can
be tolerated within acceptable ranges in the fitness function.

The fact that a GA converges starting from an initial MAS at Step 4 of
the SADDE methodology proves that the model chosen for the ABM at

www.manaraa.com

216 Methodologies and Software Engineering for Agent Systems

step 3 in SADDE is feasible to show the behaviour specified at the EBM.
A failure on this would mean that the ABM model is not appropriate.

Finally, we have observed through experimentation that societies with a
high interaction degree show more stable behaviours.

We intend to continue the research in the area of complex systems as we are
convinced that if a robust methodology has to be found to develop MAS it has
to deal with the highly non-linear problems that systems composed of thou-
sands of autonomous entities raise. Agents have lost the composability that
was natural in all computing paradigms from functional to imperative to ob-
ject oriented. Autonomy has open the door to many unanswered questions that
currently prevent from having robust methodologies.

www.manaraa.com

Chapter 11

THE PROMETHEUS METHODOLOGY*

Michael Winikoff and Lin Padgham

In this chapter we present the Prometheus methodology for building agent-based
software systems. Our goal in developing Prometheus was to have a process
with associated deliverables which could be used by industry practitioners and
undergraduate students without a previous background in agents. As a result,
the Prometheus methodology aims to be detailed and complete, as well as being
general-purpose and having tool support. Prometheus comprises three phases:
system specification, architectural design, and detailed design. The Prometheus
methodology has been developed over a number of years as a response to both
educational and industrial needs. The methodology has been used by industrial
practitioners, taught at workshops at a number of conferences, and has been
taught to undergraduate and postgraduate students, as well as having been used
in student projects. These experiences have been positive and we have noticed
an enormous difference in the ability of our students to develop agent systems.
Using Prometheus third year undergraduates are able to build reasonable agent
systems in a one semester course, something that previously was challenging for
graduate students.

Agents, Software Engineering, Methodologies.

Abstract

Keywords:

1. Introduction
Prometheus1 is a methodology for developing agent-oriented software sys-

tems. Our goal in developing Prometheus was to have a process with associated
deliverables which could be used by industry practitioners and undergraduate
students to develop intelligent agents systems, without a previous background

* Figures 11.1 and 11.2, the Query Late Books Scenario, and some of the text in the Architectural Design
section are reproduced by permission of John Wiley & Sons, Ltd. from Lin Padgham and Michael Winikoff,
Developing Intelligent Agent Systems: A Practical Guide to Design, ISBN 0-470-86120-7 to be published
in 2004.
1Prometheus was the wisest Titan. His name means “forethought” and he was able to foretell the future.
Prometheus is known as the protector and benefactor of man. He gave mankind a number of gifts including
fire (from http://www.greekmythology.com).

www.manaraa.com

218 Methodologies and Software Engineering for Agent Systems

in agents. To this end Prometheus aims to be detailed and complete in the sense
of covering all the stages of software development as applied to agent systems.

The Prometheus methodology includes three phases:

The system specification phase focuses on (i) identifying the system’s
interface, that, since we are dealing with situated agents, consists of per-
cepts (information from the environment), and actions; and (ii) deter-
mining the system’s goals, functionalities, and use case scenarios, along
with any important shared data. The outputs from this phase are a set of
functionality descriptions, percept and action descriptions, system goals,
and use case scenarios.

The architectural design phase uses the outputs from the previous phase
to determine which agents the system will contain, how they will inter-
act, and what significant events occur in the environment. The outputs of
this phase are a system overview diagram, agent descriptions, agent in-
teraction protocols and a list of significant events and messages between
agents.

The detailed design phase looks at the internals of each agent and how
it will accomplish its tasks within the overall system. The outcomes of
this phase are detailed diagrams showing the internal functionality of
each agent and its capabilities, process diagrams that show the internal
processing of the agent, as well as descriptions of data structures used
by the agent, plans and subtasks and the details of plan triggers.

Figure 11.1 indicates the main design artifacts that arise from each of these
phases as well as some of the intermediary items and relationships between
items. The figure shows the models and dependencies, but does not show the
process (although it does imply it).

The development (and revision) of the various models depicted in Figure
11.1 is intended to proceed in an iterative fashion (similar to the Rational Uni-
fied Process) where in each iteration the focus of the work gradually shifts
further down towards implementation, but where it is expected that most it-
erations will not be exclusively concerned with a single phase and that many
iterations will involve revision of previously developed models.

Figure 11.1 is divided horizontally and vertically. The three horizontal re-
gions form the three phases of the methodology discussed above. The left-
most region (consisting of scenarios, interaction diagrams, interaction proto-
cols and process diagrams) deals with descriptions of the dynamic behaviour
of the system. The middle vertical region (data coupling, acquaintance, system
overview, agent overview and capability overview) deal with overviews of the
system while the remaining models (the right region) give detailed descriptions

www.manaraa.com

The Prometheus Methodology 219

Figure 11.1. Overview of the Prometheus Methodology

for each entity in the system. Both the middle and right region deal with the
static structure of the system.

Prometheus, like any other methodology, defines a number of system mod-
els and notations that are used to describe these models. We describe structural
overviews at various levels (system, agent, capability) with a single diagram
type. In addition, diagrams are used for showing data coupling and agent ac-
quaintance relationships. Dynamic behaviour is currently described with ex-
isting models from UML (Unified Modeling Language) and AUML (Agent
UML) (see chapter 12).

In addition to graphical notations, we use structured textual descriptors (i.e.,
forms) for describing individual system entities (e.g., agents, functionalities,
plans, etc.). We also maintain a data dictionary which is important in ensuring
consistent use of names.

It is important to note that Prometheus is a general purpose methodology.
In particular, most of the methodology (specification and architectural design)
does not assume a particular agent architecture. Although the detailed design
phase does target a particular family of agent architectures (namely those that
achieve goals using a library of plans), this does not make Prometheus special-

www.manaraa.com

220 Methodologies and Software Engineering for Agent Systems

purpose. Any methodology that addresses implementation needs to have a
target platform. For example, Tropos (Bresciani et al., 2002) (see chapter 5)
also targets BDI-like systems, whereas Gaia (see chapter 4) avoids the issue by
not addressing implementation.

In the following sections we briefly describe the processes and models asso-
ciated with each of the three phases. Due to space limitations and the desire to
describe all of the methodology this chapter cannot do justice to Prometheus.
In particular, we cannot describe a running example in detail, and the detailed
techniques, that is how particular steps in the process are performed, are not
described. The description in this chapter is current as of October 2003. For
further or up-to-date information see http://www.cs.rmit.edu.au/agents/

SAC.

2. System Specification

System specification consists of three main activities: determining the sys-
tem’s interface to the environment, determining the system’s goals and func-
tionalities, and determining scenarios which capture the usage of the system.

Since agents are situated, one of the key things to be captured in the devel-
opment process is how the agents interact with their environment. Following
standard terminology (Russell and Norvig, 1995) we call incoming informa-
tion from the environment percepts and agents’ means of affecting the envi-
ronment actions. As discussed in (Winikoff et al., 2001) the raw data from
percepts may need to be processed in order to obtain things that are a signifi-
cant event for the agent system. Prometheus prompts the developer to consider
such issues. For example a video frame from a camera on a soccer playing
robot, may need processing to extract the symbolic objects, such as ball, goal
and players, as well as further processing to determine whether anything sig-
nificant has actually happened – such as a ball having moved since a previous
frame, or a ball not appearing where one was expected.

Determining the system’s goals and functionalities is done by iterating over
the following steps:

Identify and refine system goals – main and subsidiary;

Group goals into functionalities;

Prepare functionality descriptors;

Define use case scenarios (and variations); and

Check that all goals are covered by scenarios.

An initial set of goals is identified from the initial requirements. These are
refined and elaborated into a hierarchy of goals by asking how goals will be

www.manaraa.com

The Prometheus Methodology 221

achieved, and why2 goals are being achieved (van Lamsweerde, 2001). For
example, if we are designing an online book store we might have a high-level
goal fully online system. This goal might have associated with it the subgoals
find books online, pay online and order online.

Functionalities are limited “chunks” of system behaviour that describe in a
broad sense what the system needs to be able to do. We derive functionalities
by grouping related goals. For example, given the goals above, we might also
have another high-level goal of purchase books with subgoals find books, place
order, make payment, and arrange delivery. Pay online and make payment are
clearly closely related if not identical goals, and are therefore grouped together
in a single functionality.

Functionality descriptors capture the name and description of each function-
ality as well as what events activate it, what goals it achieves, what actions it
performs, what percepts it receives, what messages it sends/receives, and what
data it uses and produces.

Use case scenarios are complementary to goals in that they show how pro-
cesses are composed within the system. In developing goals, we typically
already are building up scenarios of how these goals will be part of various
processes within the system. Scenarios enable us to specify some of this struc-
ture, which in turn may help to identify missing goals.

Use case scenarios are based on ideas from object oriented design but are
more structured. This structure allows for automated cross checking, and au-
tomatic production of partial information for later design artifacts (e.g., proto-
cols).

The core of the use case scenario is the sequence of steps describing a par-
ticular example of the system in operation. Each step can optionally have data
read and data written noted as well as the functionality that performs that step.
Each step can be a GOAL, ACTION, PERCEPT or SCENARIO, as well as OTHER

allowing for additional step types, although these cannot be used in automated
processing. The following example illustrates the steps of a use case scenario
in Prometheus.

Query Late Books Scenario
Trigger: User enquiry

GOAL: Determine delivery status
GOAL: Log delivery problem
ACTION: Request delivery tracking
GOAL: Inform customer
OTHER: Delay

1.
2.
3.
4.
5.

2At the moment we do not use this in Prometheus – asking “why” can help derive early requirements that
capture why the system is being built.

www.manaraa.com

222 Methodologies and Software Engineering for Agent Systems

PERCEPT: Tracking information received
GOAL: Arrange delivery
GOAL: Log books outgoing
GOAL: Inform customer

6.
7.
8.
9.

GOAL: Update delivery problem10.

Functionality descriptors, goals, and use cases give different views of a
common underlying system. As a result they should be checked for mutual
consistency. For example an interaction between functionalities in a use case
scenario should also be evident in the interactions field of a functionality de-
scriptor. Also, each system goal should be represented in at least one scenario;
all functionalities should be covered; and use case scenarios should cover the
important normal uses of the system as well as some error/unusual situations,
in order to give an idea of how these will be handled.

3. Architectural Design

The three aspects that are developed during architectural design are:

Deciding on the agent types used in the application. Agent types are
formed by grouping a number of functionalities together. Diagrams
which we use to assist in the analysis are data coupling diagrams and
agent acquaintance diagrams.

Designing the overall system structure (with a system overview diagram
along with descriptors).

Describing the interactions between agents using interaction diagrams
(developed from scenarios) and interaction protocols (developed from
interaction diagrams).

1

2

3

3.1 Deciding on the Agent Types

One technique that we use to systematically examine the properties which
lead to coupling and cohesion is the Data Coupling Diagram. Potential group-
ings are then evaluated and possibly refined using an Agent Acquaintance Di-
agram.

A data coupling diagram (see Figure 11.2) consists of the functionalities and
all identified data (not only persistent data, but also data the functionalities re-
quire to fulfil their job). Directed links are then inserted between functionalities
and data, where an arrow pointing towards the data indicates the data is pro-
duced or written by that functionality, whereas an arrow pointing towards the
functionality indicates the data is used by the functionality. A double-headed
arrow indicates that the functionality both uses and produces the data. Edges

www.manaraa.com

The Prometheus Methodology 223

between data and data or between functionality and functionality are incorrect
syntax (and cannot be drawn in the tool).

The data coupling diagram is used to identify groupings which are linked by
their data use. When assessing the diagram visually we are looking for clusters
of functionalities around data. This is one important aspect in the analysis of
potential groupings of functionalities. It is also used to guide refinements and
changes to achieve a cleaner delineation between agents.

Some reasons for grouping functionalities into a single agent are if the func-
tionalities seem to be related or if they share a lot of information. Some reasons
for not grouping functionalities are if the functionalities are clearly unrelated,
or if they exist on different hardware platforms.

Figure 11.2. Data Coupling Diagram

In order to evaluate a potential grouping of functionalities into agents with
respect to agent coupling we use an agent acquaintance diagram (see Figure
11.3). This diagram represents each of the agent types in the system. Infor-
mation about agent interaction is extracted from the functionality descriptors
and each agent type is linked with the other agent types it interacts with. Links
can be decorated with the cardinality of the relationship if desired (e.g., one
warehouse agent interacts with many sales agents).

We then analyse the resulting diagram in two ways. One is simply an anal-
ysis of the density of the links within the diagram. It is a measure of the ratio
of the actual coupling to the maximal possible coupling. If the system has
four agents, then each agent could potentially be linked to a maximum of three
other agents, giving a total number of 3 + 2 + 1 possible links. To get the link

www.manaraa.com

224 Methodologies and Software Engineering for Agent Systems

density we simply count the links and divide by this number. This measure is
only one aspect of the analysis. We also consider bottlenecks and other issues.

Figure 11.3. Agent Acquaintance Diagram

3.2 Designing the Overall System Structure
The system overview diagram is arguably the single most important artifact

of the entire design process, although of course it cannot really be understood
fully in isolation. The various descriptors provide the more detailed informa-
tion that may be required.

The notation used in the system overview diagram (and in agent and ca-
pability overview diagrams) is a directed graph where nodes represent design
entities and directed arcs represent relationships. Figure 11.4 depicts the nodes
that are currently used, these correspond directly to the concepts used in the
Prometheus methodology.

A syntactically valid overview diagram consists of a set of nodes (exclud-
ing goals and functionalities), each labelled with a name, with links between
them. We distinguish between “active” nodes (entities that do things – agents,
capabilities, and plans) and “passive” nodes (anything else – percepts, actions,
messages, protocols, data). A link is valid from an active node to a passive
node or from a passive node to an active node. A link is not valid from an
active to an active node or from a passive to a passive node. An additional

Figure 11.4. Notation used in Overview Diagrams

www.manaraa.com

The Prometheus Methodology 225

constraints is that there cannot be links to a percept and there cannot be links
from an action.

The meaning of links is as follows:

A link to a message indicates that the agent type (or capability or plan)
sends that message.

A link to a protocol indicates that the entity communicates using the
protocol in question.

A link to an action indicates that the entity performs the action.

A link to a data node indicates that the entity writes to it.

A link from a message indicates that the agent type (or capability or plan)
receives that message.

A link from a percept indicates that the entity receives the percept.

A link from a data node indicates that the entity reads the data.

When drawing the system overview diagram (see Figure 11.5) we start by
creating a named agent symbol for each agent type. We also add the percepts
and actions at this point.

A data store icon is placed for each persistent data store, with an incoming
link from each agent that writes to the data store and an outgoing link from the
data store to each agent that directly accesses the data. Double headed links
(arrows at both ends) indicate both read and write.

Once interaction protocols have been defined they are added into the dia-
gram and we indicate which agents participate in these protocols.

3.3 Describing the Interactions between Agents
This sub-phase focuses on the system’s dynamic behaviour by fully spec-

ifying the interaction between agents. Interaction diagrams borrowed from
UML sequence diagrams, are used as an initial representation of agent interac-
tion. Fully specified interaction protocols (borrowed from the revised version
of AUML currently under development) are the final design artifact.

Interaction diagrams are the same as sequence diagrams of UML except
that they show interaction between agents rather than objects. One of the main
processes for developing interaction diagrams is to take the use case scenarios
developed in the specification phase and to build corresponding interaction
diagrams, showing the interaction between agents in a scenario.

As with scenarios, we would expect only to have a representative set of in-
teraction diagrams, not a complete set. In order to have complete and precisely

www.manaraa.com

226 Methodologies and Software Engineering for Agent Systems

Figure 11.5. System Overview Diagram (excerpt)

defined interactions we progress from interaction diagrams to protocols which
define exactly which interaction sequences are valid within the system.

Developing protocols is done by considering alternatives. For each message
(or percept) that an agent receives we ask “what are the possible messages
that the agent could send as a response?” We then repeat the process for
these messages. Because protocols must show all variations they are often
larger than the corresponding interaction diagram and may need to be split into
smaller chunks.

An example interaction diagram can be found in Figure 11.6 and an example
interaction protocol (using the new AUML notation) can be found in Figure
11.7.

4. Detailed Design

This phase deals with the internals of each agent‚ rather than the system as
a whole. We use a hierarchical model so that each agent is broken up into
capabilities. Capabilities may be included in more than one agent.

The steps within detailed design are:

Develop agent overviews (showing interactions between capabilities)
and capability descriptors.

Develop the internal process of an agent from the interaction protocols‚
described using a variant of UML activity diagrams3.

1

2

3This is not discussed further in this chapter.

www.manaraa.com

The Prometheus Methodology 227

Figure 11.6. Interaction Diagram

Figure 11.7. Interaction Protocol

www.manaraa.com

228 Methodologies and Software Engineering for Agent Systems

Develop the internal design of each capability in terms of plans‚ events‚
beliefs‚ and (possibly) sub-capabilities.

3

The process followed is essentially iterative refinement. We begin by con-
sidering for each agent what the agent needs to be able to do. Often‚ the func-
tionalities that were grouped to form the agent type will be a good starting
point for defining the capabilities of that agent type.

We then “connect” up the capabilities. As depicted in the system overview
diagram‚ each agent has incoming and outgoing messages‚ percepts that it re-
ceived‚ actions that it performs‚ and data that is read and/or written. Each of
these connections to an agent is mirrored in the agent overview diagram for
that agent type. The agent overview diagram for a given agent type is quite
similar to the system overview diagram‚ but shows interactions between ca-
pabilities within an agent‚ rather than between agents within a system. Any
messages or percepts that are incoming to an agent in the system overview‚
must be incoming to some capability (or plan) within that agent in the capa-
bility overview diagram. Similarly any actions or messages that are outgoing
from an agent in the system overview‚ must be outgoing from some capability
(or plan) within that agent in the capability overview diagram.

Once capabilities (and plans) within an agent have been defined we consider
each capability and refine its internals. This process continues until the inter-
nal operation of each agent and each capability is defined in terms of plans‚
messages‚ data‚ and other capabilities.

5. Tool Support
Designs for large systems are almost always developed incrementally with

many revisions. When revising any artifact‚ be it documentation‚ code‚ or de-
sign‚ it is easy to introduce inconsistencies and minor errors. We have found
tool support to be extremely useful for checking and maintaining design con-
sistency across varying levels of detail.

The Prometheus Design Tool (PDT) allows a user to enter and edit a de-
sign‚ in terms of Prometheus concepts; check the design for a range of possible
inconsistencies; and automatically generate a design report that includes de-
scriptors for each design entity‚ a design dictionary‚ and the various diagrams.
It also provides descriptor forms which prompt for the various aspects which
should be considered. When any aspect of the design is modified‚ the change
is propagated to all levels‚ although in some cases user input is still required
for finalisation.

PDT supports the Prometheus methodology in a number of ways. It sup-
ports the process of deriving agent types from functionalities by deriving part
of each agent’s interface‚ by cross checking the declared interface of an agent
against the functionalities that make up the agent type‚ and by generating cou-

www.manaraa.com

The Prometheus Methodology 229

pling and acquaintance diagrams. It supports the process of developing the
internals of agents in the detailed design phase by cross checking an agent’s
internals against the agent’s declared interface‚ checking the consistency of a
plan with its context‚ and by supporting views of design diagrams at different
levels (system overview‚ agent overview‚ and capability overview). For more
details on tool support for the Prometheus methodology see (Padgham and
Winikoff‚ 2002) (this paper discusses an early prototype tool which was also‚
somewhat confusingly‚ called PDT).

The Prometheus Design Tool is currently available4 and further functional-
ity is under development.

5.1 Debugging with Design Artifacts
The Prometheus methodology aims to support the full life cycle‚ including

testing and debugging. David Poutakidis‚ a research student of the authors‚
has been working on debugging MAS‚ using design artifacts such as those
produced by the Prometheus methodology. The central claim in his work is
that:

“... design documents and systems model developed when following an agent-
oriented software engineering methodology [such as Prometheus] can be incor-
porated in an agent and used at run-time to provide for run-time error detection
and debugging.” (Poutakidis et al.‚ 2002)

Specifically‚ the work described in (Poutakidis et al.‚ 2002; Poutakidis et al.‚
2003) uses interaction protocols expressed in AUML (Odell et al.‚ 2000).
These are translated into Petri nets and a debugging agent uses these to moni-
tor agent interactions and alert the programmer when a protocol is not followed
correctly.

5.2 Code Generation
The latest version of the JACK5 Development Environment (JDE) includes

a design tool that allows Prometheus overview diagrams (based on a slightly
older version of the methodology) to be drawn. The JDE also includes a graph-
ical user interface that allows the structure of an agent system to be built by
drag-and-drop and by filling in forms.

The JDE supports the Prometheus methodology in that the concepts pro-
vided by JACK correspond to the artifacts developed in Prometheus’ detailed
design phase. It is important to realise that the agent structure described in
the JDE generates JACK code that can be compiled and run. This automatic

4PDT can be downloaded from http://www.cs.rmit.edu.au/agents/pdt
5JACK is a commercial agent development platform developed by Agent Oriented Software. It includes an
agent-oriented programming language that is a superset of Java.

www.manaraa.com

230 Methodologies and Software Engineering for Agent Systems

generation of skeleton code from design artifacts is extremely useful‚ and has
encouraged students to do design prior to coding.

6. Experiences with Using Prometheus

The Prometheus methodology has been developed over a number of years‚
as a response to both educational and industrial needs. During its development
it has been used by industrial practitioners‚ taught at workshops at a number of
conferences‚ and has been taught to undergraduate and postgraduate students‚
as well as having been used in student projects.

We have worked with development of agent software for eight years and
have during this time had a wealth of experience in trying to teach students
to build such systems. The Prometheus methodology has partially grown out
of this experience and we have noticed an enormous difference in the last few
years‚ in the ability of our students to develop agent systems. Previously‚ with-
out a methodology‚ graduate students would flounder and end up building a
system which made little real use of agents. Using Prometheus‚ third year un-
dergraduates are now able to build reasonable agent systems in a one semester
course.

We have worked with companies that sell agent development platforms (for
BDI agents) and they have experienced similar difficulties with teaching their
customers how to develop agent based systems‚ as we have experienced with
students. We have worked with Agent Oriented Software6 (AOS) both in de-
veloping the methodology and also in producing materials for training profes-
sional software developers in development of agent systems. The methodology
has formed the basis for a course on agent-oriented design that is offered by
AOS to industry software developers who are starting to use the JACK intel-
ligent agents development environment (Busetta et al.‚ 1998)‚ and has been
successful in introducing them to methods to assist them in design of agent
applications. For example‚ a prototype weather alerting system (Mathieson
et al.‚ 2004) developed for the Australian Bureau of Meteorology by AOS used
Prometheus overview diagrams (produced using the JDE) to capture the de-
sign. The Prometheus overview diagram notation (as implemented in the JDE)
is also used within AOS on a range of projects.

The methodology has also been taught to undergraduate students as a class.
The class spends roughly half of the semester covering the methodology and
the other half introducing the JACK agent programming language and plat-
form. The students were able to design and implement reasonable agent sys-
tems in a single semester.

6The company that produces the JACK™ platform‚ http://www.agent–software.com

www.manaraa.com

The Prometheus Methodology 231

Finally‚ we have on two occasions given undergraduate students materi-
als on Prometheus (tutorial notes and papers) and‚ with intentionally limited
guidance‚ had them design (and in one case also implement) an agent system.
During the Christmas 2002/2003 vacation a second year student was given a
description of the methodology and a description of an agent application (in
the area of tourism) and asked to design and build a system. Although there
was not enough time to build the system (a considerable amount of time was
spent in developing requirements based on an available database of tourist in-
formation)‚ the student did produce a detailed design in 8 weeks. During the
Christmas 2001/2002 vacation a (different) second year student was given a de-
scription of the methodology and a description of an agent application (in the
area of Holonic Manufacturing) and asked to build a system. With only (in-
tentionally) limited support‚ the student was able to design and implement an
agent system to perform a Holonic Manufacturing simulation in a period of 8
weeks. This was in marked contrast to projects in the late 1990s where students
struggled and required large amounts of help‚ usually ending up with poorly
designed agent systems. The feedback from these undergraduate students was
valuable in improving the methodology. The two primary issues identified by
the students were the need for tool support and the need to simplify the con-
cepts (Prometheus previously had percepts‚ events‚ incidents‚ messages and
triggers). Both issues have since been addressed.

7. Related Work
Naturally Prometheus has some similarities to other AOSE methodologies

as well as to object-oriented approaches‚ in particular UML. We review briefly
some of these similarities and differences.

7.1 Agent-Oriented Software Engineering
There is currently a large amount of work being done in AOSE methodolo-

gies‚ e.g.‚ (Brazier et al.‚ 1997; Bresciani et al.‚ 2002; Burmeister‚ 1996; Bur-
rafato and Cossentino‚ 2002; Bush et al.‚ 2001; Caire et al.‚ 2001b; Collinot
et al.‚ 1996; Cossentino and Potts‚ 2002; Debenham and Henderson-Sellers‚
2002; DeLoach et al.‚ 2001; Drogoul and Zucker‚ 1998; Elammari and Lalonde‚
1999; Glaser‚ 1996; Iglesias et al.‚ 1998a; Kendall et al.‚ 1995; Kinny et al.‚
1996; Lind‚ 2000; Odell et al.‚ 2000; Shehory and Sturm‚ 2001; Varga et al.‚
1994)‚ and‚ of course‚ other chapters in this book.

The Gaia methodology has‚ like Prometheus‚ been developed over a number
of years by people experienced in building agent systems. However‚ we found
that the lack of a detailed design process – intentionally absent due to a desire
for generality – meant that it did not provide sufficient support for the needs of
those we were working with. There are similarities between Prometheus and

www.manaraa.com

232 Methodologies and Software Engineering for Agent Systems

Gaia for specification and architectural design. Our agent acquaintance dia-
grams are essentially the same as those used by Gaia‚ and the roles of Gaia are
similar in concept to functionalities in Prometheus‚ although there are slightly
different things which are considered.

The Tropos methodology (Bresciani et al.‚ 2002) covers early requirements
to detailed design. Its detailed design is oriented very specifically towards
JACK as an implementation platform. Compared with Prometheus‚ Tropos
provides an early requirements phase‚ which Prometheus does not (although‚ it
would certainly be possible to adapt Tropos’ early requirements phase for use
in Prometheus). Prometheus provides a more detailed process – particularly
in the architectural design phase. Prometheus also provides tool support and
cross checking; tool support for Tropos is only in the form of a diagram editor7‚
rather than the consistency checking and automatic generation of some parts
of the design that is part of PDT.

The MaSE methodology (DeLoach‚ 2001) (see chapter 6) is one of the few
methodologies that has significant tool support. However‚ MaSE is unsuitable
for our purposes since it views agents “... merely as a convenient abstraction‚
which may or may not possess intelligence” (DeLoach‚ 2001). Thus‚ MaSE
(intentionally) does not support the construction of plan-based agents that are
able to provide a flexible mix of reactive and pro-active behaviour.

The MESSAGE methodology (Caire et al.‚ 2001b) (see chapter 9) extends
UML to provide rich models for analysis and design. However‚ there is less
detail on detailed design and implementation.

In addition to general purpose methodologies there are also methodolo-
gies such as ADELFE (see chapter 8) and SADDE (see chapter 10) which
focus on particular application domains or aspects of design. For example‚
ADELFE extends RUP and UML with activities that support developing com-
plex systems with emergent behaviour. ADELFE has some elements in com-
mon with Prometheus: for example characterising the environment‚ and iden-
tifying agent types. However there are also differences: for example goals do
not appear to play a significant role in ADELFE.

Because the field is still young‚ none of the available methodologies can
claim extensive use well beyond the group which has developed them. How-
ever the widespread development and use of these many new methodologies
clearly indicates a need that is starting to be met‚ to provide more specific
design methodologies for building agent systems.

Given the large number of agent-oriented methodologies that have been pro-
posed‚ there is a growing need for comparisons between methodologies. (Dam
and Winikoff‚ 2003) compare MaSE‚ Prometheus and Tropos using a feature-

7Conversation with Anna Perini at AAMAS in July‚ 2002.

www.manaraa.com

The Prometheus Methodology 233

based approach where the assessment of each methodology against the criteria
is validated using a survey of the developers of the methodology (and of stu-
dents). (Dam‚ 2003) extends this to include MESSAGE and Gaia and also
performs a comparative analysis of the models and processes of each of the
methodologies. Other comparisons between agent-oriented methodologies in-
clude (Cernuzzi and Rossi‚ 2002; Shehory and Sturm‚ 2001; Sturm and She-
hory‚ 2003) and chapter 7.

7.2 Object-Oriented Software Engineering
Some approaches to developing agent-oriented systems are based on taking

UML8 and extending or modifying it‚ as is done by (Odell et al.‚ 2000) as well
as others with a slightly different approach‚ e.g.‚ (Papasimeon and Heinze‚
2001). This approach is sometimes justified by the argument that agents are a
special case of active objects.

Although agents can in some ways be seen as a specialised type of object‚
we believe that it is important to focus on such concepts as goals‚ plans and de-
scriptions of situations. This is better supported by a more specialised method-
ology‚ borrowing and drawing from UML as appropriate. In our experience‚
just extending UML does not provide sufficient assistance to start thinking in
a different paradigm.

There are significant differences between agent-oriented design and Object-
Oriented (OO) design. These differences include the provision of a process for
determining the agent types in the system; treating messages as entities in their
own right‚ not just as labels on arcs; distinguishing percepts and actions from
messages‚ and looking explicitly at percept processing; distinguishing beliefs
from agents (in OO both are passive objects); the identification of agent life-
cycle issues; the use of protocols to capture the dynamics of agent interaction;
and the use of goals.

Although there are clear differences between Prometheus and OO method-
ologies‚ there are also commonalities. Although we do not believe that current
OO methodologies are sufficient‚ we certainly do believe that they are relevant
– agents are software (Wooldridge and Jennings‚ 1998)‚ and indeed‚ many as-
pects of the Prometheus methodology have been based on OO methods and
notations. For example‚ the scenarios are adapted from OO use-case scenar-
ios; interaction diagrams are used as-is; AUML (itself an extension of UML) is
used as-is‚ and Prometheus follows the RUP approach to applying an iterative
process over clearly delineated phases.

8Strictly speaking UML is not a methodology but rather a notation. However it is often coupled‚ either
explicitly or implicitly with a methodology such as the Rational Unified Process (RUP).

www.manaraa.com

234 Methodologies and Software Engineering for Agent Systems

In the longer term we see integrating agent methodologies with OO method-
ologies (and specifically with UML‚ since it is the de-facto standard notation)
as important steps in making agent methodologies accessible to developers. In
this respect the work of (Papasimeon and Heinze‚ 2001) and (Wagner‚ 2002)
is valuable. However‚ we believe that given the current state-of-the-art‚ where
the concepts and notations for designing agent systems are not agreed upon‚ it
is best to consider possibilities without the world-view suggested by OO.

8. Future Work

Currently we are working on defining in more detail the processes and tech-
niques associated with goals (in the system specification phase)‚ and how these
are systematically propagated through the design to the individual plans of an
agent. We are also working on processes and techniques that are used to pro-
ceed from use case scenarios to interaction protocols. Further tool development
is also ongoing.

In the longer term we plan to extend Prometheus with better support for
early requirements as well as for implementation‚ testing and debugging. Sec-
ondly‚ we would like to enhance the methodology to provide specific support
for the design of team based systems‚ in the sense of (Cohen and Levesque‚
1991)‚ and systems that are open. The work of (Collinot et al.‚ 1996; Dro-
goul and Zucker‚ 1998; Huget‚ 2002d) will no doubt be relevant to this latter
enhancement.

Finally‚ as the methodology continues to be used by a broader range of soft-
ware developers we will continue to respond to evaluations and feedback in an
effort to support the process of building MAS.

Acknowledgments
We would like to thank Agent Oriented Software and the Australian Re-

search Council. We would also like to thank James Harland‚ John Thangarajah‚
David Poutakidis‚ Anna Edberg and Christian Andersson of RMIT University‚
and Ralph Rönnquist‚ Andrew Lucas‚ Andrew Hodgson‚ Paul Maisano‚ and
Jamie Curmi of Agent Oriented Software‚ as well as the many students and
workshop participants who have provided comments‚ examples and feedback.

www.manaraa.com

IV

TOOLS AND INFRASTRUCTURES FOR
AGENT-ORIENTED SOFTWARE ENGINEERING

www.manaraa.com

Chapter 12

THE AUML APPROACH

Marc-Philippe Huget‚ James Odell and Bernhard Bauer

Abstract Since the earliest work in multiagent system development‚ the need has existed
to have a methodology and a modeling notation. A recent approach chosen by
several authors is based on UML. The main advantage of UML is to provide a
recognized notation in software engineering methodology and strong tools for
the development. The approach presented here is called Agent UML (AUML)
that synthesizes a growing concern for agent-based modeling representations
with the increasing acceptance of UML for object-oriented software develop-
ment. This chapter covers the first phase (from 1999 to 2002) in the development
of Agent UML with the sequence and agent class diagrams and describes future
directions that follows Agent UML via the standardization at the FIPA.

1. Introduction
Since the earliest work in MAS development‚ the need has existed to have a

methodology and a modeling notation‚ see the seminal work on Agent-Oriented
Programming (Shoham‚ 1991). Since this first work from Shoham‚ many
methodologies and notations appear for MAS development. Some chose tem-
poral logic like (Fisher and Wooldridge‚ 1997) for Concurrent METATEM. A
recent approach chosen by several authors is based on UML. The main ad-
vantage of UML is to provide a recognized notation in software engineering
methodology and strong tools for the development. As (Odell et al.‚ 2000) indi-
cated‚ starting over to develop a new modeling language for agents was neither
useful nor productive. Instead‚ MAS could‚ in part‚ benefit from an incremen-
tal extension of existing‚ known and trusted methods. Agent UML (AUML)
synthesizes a growing concern for agent-based modeling representations with
the increasing acceptance of UML for object-oriented software development.

Agent UML – as an extension of UML – allows developers coming software
engineering to move smoothly from software development to agent develop-
ment. Agent UML avoids abrupt steps by using and extending UML with
agent-specific features through stereotypes and profiles. Agent UML was first

www.manaraa.com

238 Methodologies and Software Engineering for Agent Systems

introduced in 1999 with the proposal on interaction protocols given in (Bauer‚
1999). After a first period from 1999 till 2002 where Agent UML community
proposes two specifications (sequence diagrams and agent class diagrams)‚ a
growing interest is visible and efforts become to be coordinated in order to
define Agent UML based on the UML 2.0 (OMG‚ 2003b) specification and to
standardize it at the FIPA association. This chapter covers the first period with
the description of the two specifications and gives possible future directions
that the Agent UML community may follow.

Following sections present the purpose of Agent UML in AOSE (see section
2)‚ the current version of Agent UML with the sequence diagram and the agent
class diagram (see section 3). The remaining of the chapter describes future
directions of work for Agent UML community particularly with the creation
of new diagrams‚ of tools‚ the definition of semantics for Agent UML and the
development and documentation of applications that use Agent UML for the
analysis‚ design‚ and implementation.

2. Agent UML Purpose

MAS are often characterized as extensions of object-oriented systems. This
overly simplified view has often troubled system designers as they try to cap-
ture the unique features of MAS systems using OO tools. In response‚ an
agent-based unified modeling language (AUML) is being developed.

Like UML on which it is partially based‚ the purpose of Agent UML is to
offer to developers a notation that it is used to analyze‚ design‚ and implement
MAS. The key idea of Agent UML is to reuse as much as possible diagrams
coming from UML when they fit MAS designers’ needs and to extend UML –
through its extension abilities (stereotypes‚ tagged values‚ constraints) – when
agents and objects are different and agents cannot be represented by UML di-
agrams. Such an example of extension is in Agent UML sequence diagrams
with the three connectors AND‚ OR and XOR. The use of Agent UML in
the documentation is clearly visible in the FIPA Interaction specification (see
http://www.fipa.org/repository/ips.php3) since all the interaction pro-
tocols are documented with a diagram expressed in Agent UML.

It should be noted‚ however‚ that instead of reliance on the OMG’s UML‚
we intend to reuse of UML wherever it makes sense. In other words‚ AUML
should not be restricted to just UML – only want to capitalize on UML where
appropriate. The general philosophy‚ then‚ is: when it makes sense to reuse
portions of UML‚ then do so; when it does not make sense to use UML‚ use
something else or create something new.

www.manaraa.com

The AUML Approach 239

3. Current Work in Agent UML

The initial work on Agent UML focuses on the agent interaction. (Odell
et al.‚ 2001) define sequence diagrams (also called in some papers protocol
diagrams) to this purpose. Agent UML sequence diagrams became de jure
the notation to represent FIPA Interaction protocols as sketched in FIPA spec-
ifications. This first work on sequence diagrams was quickly followed by a
proposal for the representation of agents and agent architectures through the
agent class diagrams proposed in (Bauer‚ 2001) and refined in (Huget‚ 2002a).

3.1 Sequence Diagrams
Agent UML Sequence Diagrams were initially one of the most used dia-

grams because they were adopted by FIPA to express agent interaction pro-
tocols as sketched in FIPA specifications. Sequence diagrams are defined as
follows in UML: “A diagram that shows object interactions arranged in time
sequence. In particular‚ it shows the objects participating in the interaction
and the sequence of messages exchanged. Unlike a collaboration diagram‚
a sequence diagram includes time sequences but does not include object re-
lationships.” Since Agent UML considers agents and not objects‚ one must
read agents instead of objects in the previous definition. Sequence diagrams in
MAS are diagrams which express the exchange of messages through protocols.

Sequence diagrams have two dimensions: (i) the vertical dimension repre-
sents time; and (ii) the horizontal dimension represents different instances or
roles. Messages in sequence diagrams are ordered according to a time axis.
This time axis is usually not rendered on diagrams but it goes according to the
vertical dimension from top to bottom. So‚ a message defined higher than a
second one is sent before. Sequence diagrams do not use sequence numbers as
collaboration diagrams to represent the message ordering. Message ordering
is performed by the time axis.

Several basic components are used within sequence diagrams:

Agents and agent roles;

Agent lifelines and threads of interaction;

Connectors;

Messages;

Conditions on messages;

Multiplicity;

Types of message delivery;

1

2

3

4

5

6

7

www.manaraa.com

240 Methodologies and Software Engineering for Agent Systems

Nested and interleaved messages; and

Protocol templates.

8

9

Following sections present these features.

Agents and Agent Roles. Agents can perform various roles within one
interaction protocol. For instance‚ in an auction between an airline and poten-
tial ticket buyers‚ the airline has the role of a seller and the participants have
the role of buyers. But at the same time‚ a buyer in this auction can act as a
seller in another auction. UML precises that a role is the behavior of an entity
participating in a particular context. One can also add that a role is a specific
set of behaviors‚ properties‚ interfaces and service descriptions which allow to
distinguish a particular role from another one.

Several terms are used in UML for representing the role classification: a
static classification means that an agent has an unique role during all the exe-
cution. A multiple classification corresponds for agents to have different roles
during the execution. For instance‚ it is the case for the previous example
where buyers can act‚ in parallel‚ as buyers and as sellers. Finally‚ a dynamic
classification corresponds to the ability to change from one role to another one
during the execution. All these classifications appear when designing sequence
diagrams.

A protocol can be defined at the level of concrete agent instances or for a
set of agents satisfying a distinguished role and/or class. An agent satisfying
a distinguished agent role and class is called agent of a given agent role and
class‚ respectively. The general form of describing agent roles in Agent UML
is:

instance–1‚...‚instance–n / role–1‚... ‚role–m : class

denoting a distinguished set of agent instances instance-1‚... ‚instance-n sat-
isfying the agent roles role-1‚... ‚role-m with and class it belongs
to. Instances‚ roles or class can be omitted‚ in the case that the instances are
omitted‚ the roles and class are not underlined.

Instances‚ roles and class are textual strings. The class must correspond to
an agent class. Roles are rendered within boxes on sequence diagrams. These
boxes are places at the top of the diagram.

In Figure 12.1 the auctioneer is a concrete instance of an agent named UML-
Airlines playing the role of an Auctioneer being of class Seller. The partici-
pants of the auctions are agents of role AuctionParticipants which are familiar
with auctions and of class Consumer. Further information of the elements of
this figure are given all along the chapter.

Agent Lifelines and Threads of Interaction. The agent lifeline in se-
quence diagrams defines the time period during which an agent exists‚ repre-

www.manaraa.com

The AUML Approach 241

Figure 12.1. English Auction protocol for surplus flight tickets

sented by vertical dashed lines. When a lifeline is created for a role‚ this role
becomes active in the interaction. This lifeline is present as long as the role is
active in the interaction.

Added to lifelines‚ there are threads of interaction – UML uses term focus
of control. The thread of interaction shows the period during which an agent is
performing some tasks as a reaction to an incoming message. It only represents
the duration of an action‚ but not the control relationship between the sender of
the message and its receiver. A thread of interaction is rendered as a tall thin
rectangle superposed on lifelines. If a metric is defined for the time axis‚ the

www.manaraa.com

242 Methodologies and Software Engineering for Agent Systems

Figure 12.2. Sequence Diagram

thread of interaction corresponds exactly to the time needed to perform actions
triggered by the incoming messages.

In this way‚ it is possible to follow the path in the interaction from the initial
interaction state to the final interaction state. Actually‚ one has just to read
the first message on the sequence diagram (messages are ordered from top to
bottom)‚ follows the transitions and uses the thread of interaction in order to
find the next message. An example is shown on Figure 12.2.

The first message is the inform message. This message arrives to the Auc-
tionParticipants but no outgoing messages are available for the thread of in-
teraction. In fact‚ the next message belongs to the thread of the Auctioneer.
This is the cfp message. This time‚ there are outgoing messages for this mes-
sage. Several message traces are defined from this point. AuctionParticipant
can answer either with not-understood or propose (see Figure 12.2).

Connectors. The lifelines may be split in order to demonstrate two kinds
of behaviors: parallelism and decisions. Three connectors are supplied for
these features (shown on Figure 12.3). The connector AND is rendered as a
thick vertical line as shown on Figure 12.3a. It means that messages have to
be sent concurrently. On Figure 12.3a‚ CA-1‚ CA-2‚ CA-3 are sent in parallel.
The connectors OR is rendered as a diamond as shown on Figure 12.3b and

www.manaraa.com

The AUML Approach 243

Figure 12.3. Agent UML Connectors

XOR is rendered as a diamond and a cross within it as shown on Figure 12.3c.
They mean that a decision between several messages has to be done. When
considering the connector OR‚ zero or several messages is chosen: a subset of
the set {CA-1‚ CA-2‚ CA-3}. In the case of several messages are selected‚ the
messages are sent in parallel. The connector XOR also represents a decision
but in this case‚ one and only one message is chosen‚ it is either CA-1 or CA-2
or CA-3.

Messages. Messages in sequence diagrams are sent from a sender role to
receiver roles. A message is rendered as a directed solid line. The arrowhead
points out the receiver role of this message. Messages are adorned with several
information as shown on Figure 12.4:

A textual string which is the message. If designers use FIPA ACL‚ mes-
sages could be the communicative act and the content.

Conditions which must be satisfied in order to enable an associated tran-
sition to fire. Conditions may be written as free-form text. Formal con-
ditions are written with OCL as depicted in (OMG‚ 2003c). Conditions
are nested by curly braces.

Multiplicity with two numbers placed near the sender role and the re-
ceiver role. These numbers correspond to the number of messages that
are sent by the sender role and the number of instances in the receiver
role that receive each message.

1

2

3

Several examples are given on Figure 12.1‚ for instance‚ the first message
from the role Auctioneer to the role AuctionParticipants where the message is
inform(start-auction‚ departure‚ arrival).

Conditions. The connectors OR and XOR are examples where a decision
has to be performed to choose the next messages. A casual solution for tackling
the non determinism of the sequence diagrams is to use conditions. As a con-
sequence‚ a message can be sent if and only if the conditions attached to this

www.manaraa.com

244 Methodologies and Software Engineering for Agent Systems

Figure 12.4. Messages in Agent UML

message are satisfied. Conditions on sequence diagrams are rendered a textual
string nested by curly braces as shown on Figure 12.1 for the not-understood
messages. The textual string can be written according to a free format or de-
signers can use OCL (Object Constraint Language) defined for this purpose as
depicted in (OMG‚ 2003c). Conditions are written just before the message on
sequence diagrams as shown on Figure 12.4.

Multiplicity. Sequence diagrams represent agents either by their instances
or by their role in the protocol. When using roles‚ it is interesting to know the
number of agents involved in both the sender role and the receiver role. The
cardinality for sender and receiver roles are given by the multiplicity. It is for
instance the case on Figure 12.1 for the propose message where k AuctionPar-
ticipants send a propose to the Auctioneer. Sometimes‚ it is not possible to
give the exact number of messages that are received. For instance‚ it is the case
for the English Auction protocol since it is not possible to know how many
AuctionParticipants will answer to the bid.

Multiplicity is adorned at both end of the transition. For instance‚ if the
message is sent by one agent role to n other agents‚ the value 1 is written near
the lifeline of the sender role and n is written near the lifeline of the receiver

www.manaraa.com

The AUML Approach 245

Figure 12.5. Types of Message Delivery in Agent UML

role. Obviously‚ if several instances in sender role send the message‚ designers
have to write the number corresponding to the number of agents instead of 1.

Multiplicity can be represented by a range of value: 0..1 (zero or one)‚ 0.. *
(many) or 1.. * (one or more). It is also possible to write several ranges of values
such as 1..4‚ 6.. * which means at least one message and not five messages.

Several examples are given on Figure 12.1. For instance‚ for the cfp mes-
sage‚ the multiplicity is 1..n. It means that the message is sent to n Auction-
Participants. The star could be used to denote that zero or more copies of this
message are sent.

Types of Message Delivery. Messages in interaction are usually sent asyn-
chronously (the symbol with a stick arrowhead as shown on the Figure 12.5a).
It shows the sending of the message without yielding control. It is also possi-
ble to sent messages synchronously (the symbol with a filled solid arrowhead
as shown on the Figure 12.5b). It shows the yielding of the thread of control
(wait semantics)‚ i.e.‚ the agent role waits until an answer message is received
and nothing else can be processed. Normally‚ messages are drawn horizon-
tally. This indicates the duration required to send the message is “atomic‚” i.e.‚
it is brief compared to the granularity of the interaction and that nothing else
“happen” during the message transmission. If the messages require some time
to arrive‚ for instance for mobile communication‚ during which something else
can occur. The message is shown on Figure 12.5c.

Nested and Interleaved Protocols. Because protocols can be codified as
recognizable patterns of agent interaction‚ they become reusable modules of
processing that can be treated as first-class notions. For example‚ Figure 12.6
depicts two kinds of protocol patterns. The left part defines a nested protocol‚
i.e.‚ a protocol within another protocol‚ and the right part defines an interleaved
protocol‚ e.g.‚ if the participant of the auction requests some information about
his/her bank account before bidding. Additionally nested protocols are used for
the definition of repetition of a nested protocol according to conditions. The
semantics of a nested protocol is the semantics of the protocol. If the nested
protocol is marked with some conditions then the semantics of the nested pro-
tocol is the semantics of the protocol under the assumption that the conditions
evaluate to true‚ otherwise the semantics is the semantics of an empty protocol‚
i.e.‚ nothing is specified.

www.manaraa.com

246 Methodologies and Software Engineering for Agent Systems

Figure 12.6. Nested Protocol and Interleaved Protocol

Protocol Templates. The purpose of a protocol template is to create a
reusable pattern for useful protocol instances. For example‚ Figure 12.7 shows
a template for the FIPA-English-Auction Protocol from Figure 12.1. It intro-
duces two new concepts represented at the top of the sequence diagrams. First‚
the protocol as a whole is treated as an entity in its own right. The protocol
can be treated as a pattern that can be customized for other problem domains.
The dashed box at the upper right-hand corner declares this pattern as a tem-
plate specification that identifies unbound entities (formal parameters) within
the package that need to be bound by actual parameters when instantiating
package. A parameterized protocol is not a directly-usable protocol because
it has unbound parameters. Its parameters must be bound to actual values to
create a bound form that is a protocol. Communicative acts in the formal pa-
rameter list can be marked with an asterisk‚ denoting kinds of messages which
can alternatively be sent in this context. This template can be instantiated for
a special purpose as shown in Figure 12.1. Figure 12.8 applies the FIPA En-
glish Auction Protocol to a particular scenario involving a specific auctioneer
UML-Airlines of role Auctioneer and class Seller and AuctionParticipants of
class Consumer. Finally‚ a specific deadline has been supplied for a response
by the seller.

3.2 Agent Class Diagrams
Class diagram in UML shows a set of classes‚ interfaces‚ and collabora-

tions and their relationships. Class diagrams are the most common diagram
found in modeling object-oriented systems. Class diagrams are used to illus-
trate the static design view of a system. Generally‚ class diagrams contain three
information: class attributes‚ class operations‚ and the relationships between
classes. It is also possible to insert the class interfaces and other compart-

www.manaraa.com

The AUML Approach 247

Figure 12.7. Nested Protocol and Interleaved Protocol

Figure 12.8. Instantiation of a Protocol Template

www.manaraa.com

248 Methodologies and Software Engineering for Agent Systems

ments in the class view such as responsibilities or exceptions. Due to many
differences between agents and objects‚ see (Odell‚ 2002) for a description‚
class diagrams are modified deeply in order to encompass agent features such
as knowledge‚ plans or protocols used. For pointing out the differences with
class diagrams in UML‚ class diagrams in Agent UML are called agent class
diagram as depicted in (Bauer‚ 2001).

UML distinguishes different specification levels‚ namely the conceptual‚ the
specification and the implementation level. Behind these levels are the notion
of abstraction. The abstraction allows designers to focus on some relevant
details while ignoring others. Designers can define as many views as they
want.

On the conceptual level‚ designers provide an overall view of a system: the
different agent classes and their relationships without considering what could
be the elements within classes. This level is particularly fitted for a description
of the architecture of the system.

On the specification level or interface level‚ an agent class is blueprint for
instances of agents. But only the interfaces are described and not the imple-
mentation‚ i.e.‚ the agent head automata describing the behavior of the agent
according to incoming messages is missing. Only the internal states and the
interface‚ i.e.‚ the communicative acts supported by the agent‚ is defined.

The implementation level or code level is the most detailed description of
a system‚ showing how instances of agents are working together and how the
implementation of a class of agents looks like. On this level the agent head
automata has to be defined‚ too.

UML class diagrams are not defined here. Detailed description of UML
class diagrams are given in (Booch et al.‚ 1999).

Agent class diagrams as defined in (Bauer‚ 2001) contain several elements:

Agent name;

State description;

Actions;

Methods;

Capabilities‚ service description‚ supported protocols;

Organization belonging; and

Agent head automata.

Agent Name. Agents are different from objects so it is necessary to make
distinction when agents and objects are both used on the same diagram. This

www.manaraa.com

The AUML Approach 249

is the case when agents are defined as a set of objects or when they use objects
to perform their tasks. The stereotype «agent» prefixes agent name.

Three information may be supplied for an agent name: instance‚ role and
class. Instances‚ roles and classes correspond to three levels when considering
agents. Class is the most general one. A class is a set of objects that share
the same set of attributes‚ operations and relationships and have the same se-
mantics in UML. The definition is extended for Agent UML in order to take
into consideration plans‚ knowledge or protocols. A role is the behavior asso-
ciated to an entity into a particular context. For instance‚ two roles are usually
described in auctions: seller and bidders. The role defines how agents react
to events. Two different roles have two different behaviors. Instances are the
most accurate information. Instances give the name of each agent involved.
Instances are unique‚ i.e.‚ if one has two instances A and B‚ it is not possible to
use the instance A instead of the instance B and vice-versa. The general form
of describing agent roles in Agent UML is:

instance–1‚ ...‚ instance–n / role–1‚ ... ‚ role–m : class

denoting a distinguished set of agent instances instance-1‚… ‚instance-n sat-
isfying the agent roles role-1‚...‚role-m with and class it belongs
to. Instances‚ roles or class can be omitted‚ in the case that the instances are
omitted‚ the roles and class are not underlined.

State Description. The state description looks similar to the attributes
compartment in class diagrams except that we introduce a distinguished class
wff for well formed formula for all kinds of logical descriptions of the state‚ in-
dependent of the underlying logic. With this extension we have the possibility
to define as well BDI agents.

In the case of BDI semantics‚ one can define four instance types‚ named
beliefs‚ desires‚ intentions and goals‚ each of type wff. These fields can be
initialized with the initial state of BDI agents.

Attributes follow the same construction as for attributes in UML:

[visibility] name [multiplicity] [:type]

[= initial–value] [property–string]

Visibility defines how an attribute can be seen and used by others. Three
cases are available: public‚ private and protected. The public visibility means
that other classes can access this attribute. Public visibility is denoted by the
symbol ‘+’. The private visibility means that only attributes and operations
in the same class of this attribute can access it. Private visibility is denoted
by the symbol ‘-’. The protected visibility means that the class itself and all
descendant of this class can access it. Protected visibility is denoted by the
symbol ‘#’.

www.manaraa.com

250 Methodologies and Software Engineering for Agent Systems

Name is the name of the attribute. It is a textual string. The name must be
unique within the class.

Multiplicity is used when it is necessary to represent several copies of the
same attribute. There are two methods for describing multiplicity: either with
a number or with a range of values. Designers use numbers or ranges of values
whether they know exactly the number of copies or not.

Type represents the type of the attribute.
Initial-value describes the initial value of this attribute.
Property-string defines how attributes can be used: changeable is the default

value and means that it is possible to update the value of this attribute‚ add-
only is used for lists and means that only the insertion is possible‚ it is then
not possible to update or to delete values in the list‚ frozen corresponds to
constants‚ the value of the attribute cannot be modified‚ persistent denotes that
the value is persistent.

Actions. Two kinds of actions can be specified for an agent: pro-active
actions (denoted by the stereotype «pro–active») that are triggered by
the agent itself‚ e.g.‚ using a timer‚ or a special state is reached. It is tested
on state changes of the agent (e.g.‚ timer‚ sensor input) if the pre-condition
of the actions evaluates to true. Re-active actions (denoted by the stereotype
«re–active») are triggered when receiving some message from another
agent.

In its full form‚ the syntax of an action is:

[visibility] [pre–conditions] name [(parameter–list)]

[post–conditions]

Visibility has the same definition as the one shown before. Name is a textual
string.

Parameter-list contains both the name of the parameter and its type.
Pre-conditions are constraints that must be true when an action is invoked.
Post-conditions are constraints that must be true at the completion of an

action.
Pre-conditions and post-conditions may be written as a free-form text or as

an OCL expression as expressed in (OMG‚ 2003c).

Methods. Methods are defined like operations in UML. An operation is the
implementation of a service that can be requested from any object of the class
to affect behavior. In other words‚ an operation is an abstraction of something
you can do to an object and that is shared by all objects of that class.

In its full form‚ the syntax of a method is:

[visibility] [pre–conditions] name [(parameter–list)]

www.manaraa.com

The AUML Approach 251

Visibility has the same definition as the one before.
Name is a textual string.
Parameter-list is defined as follows:

Direction may be any of the following values:

in: an input parameter; may not be modified;

out: an output parameter; may be modified to communicate informa-
tion to the caller; and

inout: an input parameter; may be modified.

Type and return-type represent the type of the action and of the parameter
respectively. Default-value describes the default value of the parameter.

Pre-conditions are constraints that must be true when an action is invoked.
Post-conditions are constraints that must be true at the completion of an

action.
Pre-conditions and post-conditions may be written as a free-form text or as

an OCL expression as expressed in (OMG, 2003c).

Capabilities, Service Description and Supported Protocols. Capabil-
ities describe what agents can do. UML does not supply capabilities in its
diagrams but capabilities is close to the notion of responsabilities in UML.
These responsabilities are represented as a free-form text.

Service description has to be linked to interface in UML. An interface in
UML is a collection of operation that are used to specify a service of a class
or a component. The operations in the interface do not have attributes. These
operations are considered as entry points for the class linked to these opera-
tions. One clear advantage of interfaces is that designers do not have to modify
classes linked to an interface as soon as this interface is modified. Classes re-
main the same as long as interfaces keep the same name. Service descriptions
are rendered as an interface name and a “lollipop” linked to the class. This
rendering does not describe the operations of the service description. Service
descriptions are represented with their operations as a class but prefixed by the
keyword «service».

Supported protocols are described as a list. Supported protocols are adorned
with the roles played by the agent in these protocols.

[: return-type] [post-conditions] [property-string]

[direction] name : type [= default-value]

www.manaraa.com

252 Methodologies and Software Engineering for Agent Systems

Group Representation. Agents do not act solely. They belong to at least
one group and play one or several roles in this group. The compartment orga-
nization gives the different groups in which the agent evolves, which roles it
plays and under which constraints, it can evolve in these groups. The syntax
for this information is the following:

Constraints are written as a free-form text or as an OCL expression. Con-
straints must be satisfied if agents want to belong to this group.

Role matches the roles defined for this agent in the agent name.

Agent Head Automata. The agent head automata defines the behavior of
an agent’s head. Agents are composed of three parts: communicator, head and
body.

The agent communicator is responsible for the physical communication of
the agent. The main functionality of the agent is implemented in the agent
body. This can be, e.g., an existing legacy software which is coupled to the
MAS using wrapper mechanisms.

The agent’s head is the “switch-gear” of the agent. Its behavior has to be
specified with the agent head automata. Especially, this automata related to the
incoming messages with the internal state, actions, methods and the outgoing
messages, called the reactive behaviors of the agent. Moreover, it defines the
pro-active behaviors of an agent, i.e., it automatically triggers different actions,
methods and state-changes depending on the internal state of the agent. An
example of pro-active behavior is to do some action at a specific time, e.g., an
agent migrates at pre-defined times from one machine to another one, or it is
the result of some request-when communicative acts.

4. Future Directions in Agent UML
2003 will be the year of deep modifications in Agent UML thanks to the

issue of the new UML 2.0 defined in (OMG, 2003b) and the growing interest
in Agent UML. Most of the Agent UML work is now being performed within
FIPA’s Modeling Technical Committee (TC). An important goal of the Mod-
eling TC is to be domain independent. Currently, the TC is examining those
area where its members have expertise: Service-Oriented Architecture (SOA),
Business Process Management (BPM), simulation, real-time, AOSE, robotics,
information systems. Other areas will be examined over time as additional
expertise becomes available.

Two diagrams will initially be part of the FIPA specification. The first is the
interaction diagram. This diagram consists of sequence diagrams, communi-
cation diagrams (previously called collaboration diagrams in UML 1) and the
interaction overview diagram. The second is the agent class diagram, which

[constraint] organization : role

www.manaraa.com

The AUML Approach 253

will inspired by the UML class diagram and extended to express agent-based
notions. One can think that this emerging effort around Agent UML is the first
step to a better Agent UML comprising several new diagrams and tools to ex-
ploit them. This section describes possible future directions of work for Agent
UML community.

4.1 Diagrams
Section 3 describes the current version of Agent UML at time of writing this

chapter where two diagrams are considered: sequence diagrams to represent
interaction between agents and agent class diagrams to represent agents and
agent architectures. From the first work in 1999 till 2002, this specification re-
mains as proposed but the growing interest around Agent UML mostly the last
two years gave birth to an effort to update this specification and add new dia-
grams, some derived from UML diagrams, some specifically tailored for agent
needs. The year 2003 is the year of deep modifications in Agent UML partly
due to the issue of a new version of UML called UML 2.0 defined in (OMG,
2003b). This new version of UML enhances the dynamic models and par-
ticularly the interaction diagrams that merge several diagrams and especially,
sequence diagrams. These interaction diagrams now more clearly outline the
different traces in an interaction through the CombinedFragments described
in (OMG, 2003b). As a consequence, Agent UML sequence diagrams are
hence called interaction diagrams. The current version of Agent UML interac-
tion diagrams can be found on Agent UML Web site http://www.auml.org.
Since this is an ongoing work, we here just depict the main modifications in
Agent UML interaction diagrams.

Sequence Diagrams The interaction is still enclosed in a frame but this time,
a label is added with the protocol name prefixed by the keyword sd as shown
on Figure 12.9. Moreover, template protocols are more clearly distinguishable
since the stereotype «template» is written in the label whereas, in the cur-
rent version, designers have to figure out that this is a template since there is a
dotted box overlapping the diagram in the upper right corner.

Lifelines are deeply modified: in the current version, agents are depicted
through their identity and their roles in the interaction, a role can be suffixed
by the class of the agent. In the new version, agents are depicted through their
identity and their roles but groups replace classes. Groups are attached to roles.
One found important to represent that a role can have a different behaviour if
it is involved in two different groups. Role cardinality is also included in the
box on top of the lifeline. Finally, the main difference about the lifeline is the
ability for agents to change of roles or to add and delete roles during the inter-
action, that is to say an agent winning an auction can move to the role winner if
needed. Messages are slightly modified to take into consideration when mes-

www.manaraa.com

254 Methodologies and Software Engineering for Agent Systems

Figure 12.9. Contract Net in AUML 2

sages are sent to a specific agent or when messages are sent to the same lifeline
(the sender is whether receiver or not). Timing constraints are now added to
interaction diagrams allowing designers to represent deadlines like in Contract
Net depicted in (Davis and Smith, 1983). Finally, the main difference between
the current version and the new version remains in the splitting/merging path
feature. In the current version of sequence diagrams, only three connectors are
available: AND (for parallel sending), OR (1 or several messages are sent) and
XOR (1 and only 1 is sent). This choice is rather restricted, the new version
of Agent UML interaction diagrams also considers the notion of loop, break in
the interaction to name a few, and the ability to combine different operators.

Class Diagrams A second effort is processed around agent class diagrams
in order to represent a wide range of agents and partly due to some critics
about the cumbersome of the notation and some inefficient choices as showed
in (Huget, 2002a). At time of writing, the agent class diagram specification is
not enough advanced to be presented here. The draft version of the new Agent
UML class diagrams can be found on Agent UML Web site as well.

It is worth noticing that these two specifications are about to be standardized
at FIPA.

Various Diagrams These Interaction and Class diagrams are the first ones
that will be standardized at the FIPA. Extensions to the other UML represen-

www.manaraa.com

The AUML Approach 255

tations are planned. Currently, these include: packages, templates, activity
diagrams, class diagrams, deployment diagrams, and state machines. As men-
tioned earlier, the FIPA Modeling TC activities are not limited to UML for their
inspiration: we intend to reuse of UML wherever it makes sense. There is al-
ready some research being conducted to model which UML does not currently
address. For instance, roles and groups are now playing a more important role
in interaction diagrams. The need for a role diagram that expresses how agents
assume and change roles is vital. A second kind of diagram can emerge to deal
with goals and planning. These are just two examples among others of possible
diagrams in Agent UML. Perhaps all the UML diagrams will be considered and
“agentified” if appropriate. The efforts of the FIPA Modeling TC are ongoing
and therefore not fully planned. The Modeling TC cannot fully plan, because
it is still too early to know exactly what will be required to model agent-based
systems. The field of agents and agent-based systems is still in its early stages.
As the agent community understands better how to think, communicate, and
represent its notions of agents, we will then be develop an richer and more
expressive AUML.

4.2 Tools

All specifications are worthless if no tools are provided to help designers
representing, exchanging diagrams and generating code from these diagrams.
Unfortunately, this point is not really considered for the moment for Agent
UML. Two options are possible: (i) updating an existing tool; or (ii) creating
from scratch a tool dedicated to Agent UML.

The former option is certainly the less time consuming. Two kinds of tools
are considered for this approach: tools that support UML and tools that simply
draw diagrams. In the second case, it is straightforward to propose an extension
to support Agent UML; some work is done for the moment around Dia (see
http://www.lysator.liu.se/~alla/dia) and Microsoft Visio. The main
drawback of this approach is the absence of integrated environment to generate
code and check diagrams. Problems happen with tools that support UML since
UML 2.0 is a young specification and tools do not support it for the moment, as
a consequence we cannot extend them to support Agent UML. The advantage
of such tools is the generation of code and the diagram validation. OpenTool
(see http://www.tni-valiosys.com) supports UML and Agent UML in its
current version.

Creating a tool from scratch to support Agent UML is certainly the most
time-consuming task but it offers a tool that perfectly answers to Agent UML
needs. Maybe some tools will appear in near future as soon as projects and
applications will consider Agent UML as notation.

www.manaraa.com

256 Methodologies and Software Engineering forAgent Systems

Our first work will be to extend current tools that support UML 2.0 in order
to support Agent UML as well. As soon as Agent UML will become stronger
and used, the solution will be to tailor a specific tool that offers diagram mod-
eling, code generation and validation.

4.3 Algorithms

We have already advocated the needs for tools that consider both diagram
modeling, code generation and validation. Code generation and validation of
such diagrams in the context of MAS have to be defined. Some work already
exist for the current version of sequence diagrams, see (Huget, 2002c; Koning
and Romero-Hernandez, 2002), but the same kind of effort has to be applied
to the new specification of interaction diagrams. Except the work in (Huget,
2002b) where a Java program is generated from a sequence diagram, there is
no work around code generation.

Important work has to be performed around agent class diagrams since noth-
ing for code generation and validation exists for the moment.

As soon as the interaction diagram and the agent class diagram specifica-
tions will be accepted, we will move part of our effort to provide such algo-
rithms for the validation of these diagrams and for the generation of code.

4.4 Semantics
A critic frequently encountered both for UML and Agent UML is these two

notations are not formal. We understand this concern and are conscious that
this can cause some misunderstandings when modeling agents or protocols if
this interpretation is not clearly defined. We actively work at the definition of a
semantics for Agent UML leveragging the critics on formalism in Agent UML.

4.5 Applications

Applications have to be considered as first-class citizens in the near future
of Agent UML. Actually, there is no important application of Agent UML for
the moment. The design of applications will arise problems and lacks in the
specification and will offer tools for the design of Agent UML.

5. Conclusion
MAS are often characterized as extensions of object-oriented systems. This

overly simplified view has often troubled system designers as they try to cap-
ture the unique features of MAS systems using OO tools. In response, the
agent-based unified modeling language – Agent UML – is being developed.
Instead of reliance on the OMG’s UML, we intend to reuse of UML wherever
it makes sense. We do not want to be restricted by UML; we only want to

www.manaraa.com

The AUML Approach 257

capitalize on it where we can. The general philosophy, then, is: when it makes
sense to reuse portions of UML, then do it; when it does not make sense to use
UML, use something else or create something new. Upon closer inspection
many of the new breakthroughs of UML 2.0 reflect the requests of the agent
community – making AUML less of an extension to UML 2.0 than UML 1.0.

www.manaraa.com

Chapter 13

FIPA-COMPLIANT AGENT INFRASTRUCTURES

Fabio Bellifemine and Agostino Poggi

Abstract This chapter is an introduction to FIPA-compliant agent infrastructures and, in
particular, to JADE that is one of the most known and used agent development
framework. FIPA is an international non-profit association of companies and
organizations sharing the effort of producing specifications for generic agent
technologies that can enable end-to-end interoperability between agent systems.
JADE is a software environment to build agent systems for the management of
networked information resources in compliance with the FIPA specifications.

1. Introduction

In these last years, there has been a lot of activity concerning the standard-
ization of agent-based technologies. In fact, during these years, three impor-
tant initiatives, KSE (Patil et al., 1992), FIPA (see http://www.fipa.org) and
OMG (see http://www.omg.org), worked with the goal of realizing specifica-
tions for agent technology, and, at the end, FIPA defined a set of specifications
that are now considered a “de facto” standard for agent interoperability. An
important consequence of this result is that “to be FIPA-compliant” became
a key feature of any agent based product; therefore, people working on agent
development tools and libraries are more and more interested in offering the
possibility to realize “FIPA-compliant” agent based products.

This chapter is an introduction on FIPA-compliant agent infrastructure and,
in particular, on JADE that is that most known and used agent development
framework compliant to FIPA specifications. Next section describes FIPA
activities and specifications. Section 3 introduces some of the most impor-
tant FIPA compliant development tools and libraries. Section 4 presents the
main features of JADE and some notes about its use in some international
projects. Finally, last section concludes with a brief discussion on FIPA and
FIPA-compliant development tools.

www.manaraa.com

260 Methodologies and Software Engineering for Agent Systems

2. FIPA

The Foundation for Intelligent Physical Agents (FIPA) is an international
non-profit association of companies and organizations sharing the effort to pro-
duce specifications for generic agent technologies. FIPA does not promote a
technology for just a single application domain but a set of general technolo-
gies for different application areas that developers can integrate to make com-
plex systems with a high degree of interoperability.

The FIPA standardization process relies on two main assumptions. The first
is that the time required to reach a consensus and to complete the standard
should be as short as possible, should not impede progress, but should act as a
promoter of stronger industrial commitment in agent technology. The second
assumption is that only the external behaviour of system components should be
specified, leaving implementation details and internal architectures to platform
developers. In fact, the internal architecture of JADE is proprietary even if it
complies with the interfaces specified by FIPA.

Based on the set of preliminary specifications released in 1997, at the end
of 2002 FIPA released its standard.

The FIPA standard defines the reference model of an agent platform and a
set of services that should be provided. The collection of these services, and
their standard interfaces, represents the normative rules that allow a society of
agents to exist, operate and be managed. The standard identifies the roles of
some key agents necessary for managing the platform, and describes the agent
management content language and ontology. Two key roles were identified for
an agent platform (see Figure 13.1). The Agent Management System (AMS) is
the agent that exerts supervisory control over access to and use of the platform;
moreover, it is responsible for maintaining a directory of resident agents and
for handling their life cycle. The Directory Facilitator (DF) is the agent that
passes on yellow page services to the agent platform. Notice that no restriction
is given to the actual technology used for platform implementation: an e-mail
based platform, a CORBA based one, a Java multi-threaded application, etc.
could all be FIPA compliant implementations.

According to FIPA definition, an agent is the fundamental actor in a do-
main. It is capable of bringing together a number of service capabilities to
form a unified and integrated execution model that can include access to exter-
nal software, human users and communication facilities.

Of course, the specifications also define the Agent Communication Lan-
guage (ACL). Agent communication is based on message passing, i.e., agents
communicate by sending individual messages to each other. The FIPA ACL is

matics of the messages. The specifications of the FIPA ACL and its underlying
model of communication is based on three main properties:

www.manaraa.com

FIPA-Compliant Agent Infrastructures 261

Figure 13.1. FIPA agent platform reference model

Agents are active entities, they can say “no,” and they are loosely cou-
pled. This set of interrelated properties forms the basis of the choice
of message-based asynchronous communication between agents as op-
posed to simple method call: an agent wishing to communicate has just
to send a message to a certain destination. This modality of communi-
cation, in fact, allows the receiver to select which messages to serve and
which to discard, as well as which messages to serve first and which later
in time. It also allows the sender to control its thread of execution and not
to be blocked until the receiver reads and serves the message. Finally, it
also removes any temporal dependency between the sender and the re-
ceiver: the receiver might not be available at the time the sender sends
the message, or it might even not exist at that time, or, also, it might even
be not known by the sender that, instead, defines the receiver intention-
ally (e.g., the agent interested into “football”) or mediates the communi-
cation through a proxy (e.g., propagate this message to all agents in the
system X).

Agents perform actions and communication is just a type of action. Mak-
ing communication at the same level of actions allows an agent, for in-
stance, to reason about a plan that includes both physical actions (e.g.,
turning on the left) and communicative actions (e.g., asking to open the
door). In order to make communication plannable, effects and precondi-
tions of each possible communication needs to be clearly defined.

Communication carries a semantics meaning. When an agent is the ob-
ject of a communicative action (i.e., when it receives a message), it must
be able to properly understand the meaning of that action and, in partic-

www.manaraa.com

262 Methodologies and Software Engineering for Agent Systems

ular, why that action has been performed (i.e., the communicative inten-
tion of the sender of the message). This property turns into the needs for
a universal semantics and the need for a standard, as the one described
later.

The FIPA ACL also provides the bases for the specification of interaction
protocols, which are common patterns of conversation between agents aimed
at specifying high-level tasks, such as delegating a task, negotiating conditions,
and some forms of auctions.

The remaining parts of the FIPA specifications deal with other aspects, in
particular with agent-software integration, agent mobility, agent security, on-
tology service, and human-agent communication; however, these specifica-
tions are either not complete or have a limited experimentation.

3. FIPA-Compliant Agent Infrastructures
In the last years, FIPA is becoming the “de facto” standard for agent inter-

operability, therefore, people working on agent development tools and libraries
consider to be “FIPA-compliant” a key feature of their products. In fact, the
large part of the development systems, that have been realized in the last years
or that are under development, are FIPA-compliant, see, e.g., ASL (Kerr et
al., 1998), Bee-gent (Kawamura et al., 1999), FIPA-OS (Poslad et al., 2000),
Grasshopper (see http://www.grasshopper.de), Opal (Purvis et al., 2002),
Zeus (Nwana et al., 1999).

ASL is an agent platform that supports the development in C/C++, Java,
JESS, CLIPS and Prolog (Kerr et al., 1998). ASL is built in line with the
OMG’s CORBA 2.0 specifications. The use of CORBA technology facilitates
seamless agent distribution and makes it possible to add the language bind-
ings supported by the CORBA implementations to the platform. Initially, ASL
agents communicated through KQML messages, now the platform is FIPA
compliant supporting FIPA ACL.

Bee-gent is a software framework to develop agent systems compliant with
FIPA specifications produced by Toshiba (Kawamura et al., 1999). Such a
framework provides two types of agents: wrapper agents used to agentify exist-
ing applications and mediator agents supporting the wrappers coordination by
handling all their communications. Agents communicate through XML/ACL
messages and mediator agents are mobile agents that can migrate around the
network by themselves. Bee-gent also offers: (i) a graphic RAD tool to de-
scribe agents through state transition diagrams; (ii) naming/directory facilities
to locate agents, databases and applications; (iii) ontology facilities to trans-
late words referring to the same entity; and (iv) security and safety facilities
based on digital fingerprint authentication and secret key encryption in order

www.manaraa.com

FIPA-Compliant Agent Infrastructures 263

to prevent the mediator agents from being tampered with, or wiretapped while
moving around the network.

FIPA-OSis another software framework to develop agent systems compliant
with FIPA specifications that has been created by Nortel Networks (Poslad et
al., 2000). Such a framework provides the mandatory components that produce
the agent platform of the FIPA reference model (i.e., the AMS, ACC and DF
agents, and an internal platform message transport system), an agent shell and
a template to produce agents that communicate by taking advantage of FIPA-
OS agent platforms.

Grasshopper is a pure Java based mobile agent platform, conforming with
existing agent standards, as defined by the OMG - MASIF (Mobile Agent Sys-
tem Interoperability Facility) (Milojicic et al., 1998) and FIPA specifications.
Thus Grasshopper is an open platform, enabling maximum interoperability
with other mobile and intelligent agent systems, and easy integration of ex-
isting and upcoming CORBA and Java services and APIs. The Grasshopper
environment comprises several Agencies and a Region Registry, remotely con-
nected via a selectable communication protocol. Several interfaces are speci-
fied to enable remote interactions between the distinguished distributed com-
ponents. The life of an agent system is based on the services offered by a core
agency. A core agency provides only those capabilities that are absolutely cru-
cial for the execution of agents. Agents access the core agency for retrieval
of information about other agents, agencies or places, or in order to move to
another location. Users are able to monitor and control all activities within an
agency by accessing the core services, i.e., Communication Service, Registra-
tion Service, Transport Service, Security Service, and Management Services.
Moreover, Grasshopper provides a graphic user interface for user-friendly ac-
cess to all of the functions of an agent system.

The Opal architecture for software development is described that supports
the use of agent-oriented concepts at multiple levels of abstraction Opal (Purvis
et al., 2002), At the lowest level are micro-agents, streamlined agents that can
be used for conventional, system-level programming tasks. More sophisticated
agents may be constructed by assembling combinations of micro-agents. The
architecture consequently supports the systematic use of agent-based notions
throughout the software development process. With Opal it is possible to de-
sign FIPA-based agent systems and also employ agent-based components for
virtually all aspects of a software system, including finer-grained components
that are not normally implemented in terms of agent constructs for reasons of
efficiency. Opal also supplies an Agent Conversation Manager that incorpo-
rates the notion of higher-level “policies” for guiding and constraining agent
interactions.

Zeus allows the rapid development of Java agent systems by providing a li-
brary of agent components, by supporting a visual environment for capturing

www.manaraa.com

264 Methodologies and Software Engineering for Agent Systems

user specifications, an agent building environment that includes an automatic
agent code generator and a collection of classes that form the building blocks
of individual agents (Nwana et al., 1999). Agents are composed of five lay-
ers: API layer, definition layer, organisational layer, coordination layer and
communication layer. The API layer allows interaction with the non-agentized
world. The definition layer manages the task the agent must perform. The
organisational layer manages the knowledge concerning other agents. The co-
ordination layer manages coordination and negotiation with other agents. Fi-
nally, the communication layer allows the communication with other agents.

4. JADE
JADE (Java Agent DEvelopment framework) is a software framework to aid

the development of agent applications in compliance with the FIPA specifica-
tions for interoperable intelligent MAS (Bellifemine et al., 2001). JADE is an
open source project, and the complete system can be downloaded from JADE
site http://jade.cselt.it.

The JADE system can be described from two different points of view. On
the one hand, JADE is a runtime system for FIPA-compliant MAS, supporting
application agents whenever they need to exploit some feature covered by the
FIPA standard specification (message passing, agent life-cycle management,
etc.). On the other hand, JADE is a Java framework for developing FIPA-
compliant agent applications, making FIPA standard assets available to the
programmer through object oriented abstractions. The two following subsec-
tions will present JADE from the two standpoints, trying to highlight the major
design choices followed by the JADE development team.

4.1 Runtime System
JADE communication architecture tries to offer flexible and efficient mes-

saging, transparently choosing the best transport available and leveraging state-
of-the-art distributed object technology embedded within the Java runtime en-
vironment. While appearing as a single entity to the outside world, a JADE
agent platform is itself a distributed system, since it can be split over several
hosts with one of them acting as a front end where AMS and DF agents are
placed. A JADE system comprises one or more Agent Containers, each living
in a separate Java Virtual Machine (JVM) and delivering runtime environment
support to some JADE agents (see Figure 13.2).

The JADE Runtime System tries to provide efficient and flexible messag-
ing services to user applications. JADE distinguishes between inter-platform
messaging (the sender and the receiver agents live on different platforms) and
intra-platform messaging (the two interacting agents are within the same plat-

www.manaraa.com

FIPA-Compliant Agent Infrastructures 265

Figure 13.2. JADE agent platform

form). While inter-platform messaging has to comply with FIPA specifica-
tions, intra-platform message delivery is strictly a JADE issue, therefore JADE
provides a Java interfaces that allows plugging the proper intra-platform trans-
port protocol. Available implementations of this interface include Java RMI
for intra-platform communications between J2EE and J2SE containers (i.e.,
when the container runs inside a J2EE or J2SE JVM) and a proprietary pro-
tocol when one of the container in running on a Personal Java or CLDC JVM
(i.e., is running on a small device). In this last case, the container is split into
two parts: one (front-end) running on the Personal Java or CLDC JVM and the
other (back-end) running on a special container, called mediator, living on a
J2EE or J2SE JVM (see Figure 13.3).

Since JADE is a distributed agent platform, its Agent Communication Chan-
nel (ACC) is split into different components, running on the different agent
containers that make up the platform. The major features of JADE ACC are:

Multiple MTPs can be deployed as plug-ins on multiple containers;

One hop message routing for outgoing and incoming messages; and

Protocol independent address caching.

The general JADE messaging framework allows to deploy new transport
ports during normal platform operation: the JADE administrator can add a
new protocol to any agent container, simply logging in the management GUI
and providing the Java class that implements the MTP.

www.manaraa.com

266 Methodologies and Software Engineering forAgent Systems

Figure 13.3. JADE communication architecture for small devices

An agent platform can now have any number of addresses, scattered around
different hosts. Message routing support is needed to manage this rather gen-
eral topology; the ACC provides a routing service that is guaranteed to require
at most one hop. When a message reaches the platform through one of the
available external communication ports, the ACC looks up the receiver agent
ID to retrieve the agent container where it must dispatch the incoming ACL
message. If the agent lives within the same container, the ACC uses an opti-
mized local call, otherwise it relies on Java RMI.

When an agent wants to send a message to another, living on a different
platform, it asks its local ACC for delivery service. The ACC reads the address
list of the agent ID of the message recipient and tries all the addresses until one
of them succeeds; for a specific address, the ACC discovers which MTP has
to be used (FIPA addresses are URLs, so they contain a part that identifies the
protocol) and checks to see whether that MTP is installed on the current agent
container. If so, the locally available MTP is used, otherwise the ACC routes
the message to a suitable container using a table that stores the deployment
location of each MTP in the agent platform.

The JADE messaging subsystem also has an address caching feature that al-
lows direct communication between agents without unnecessary table lookups:
intra-platform addresses and standard FIPA addresses are cached on each con-
tainer exactly in the same way. On cache hits, the messaging subsystem does
not even need to know whether the receiver is local, intra-platform or inter-
platform. The cache is updated according to an optimistic attitude (i.e., if a
cached address becomes stale the message delivery operation fails with an ex-

www.manaraa.com

FIPA-Compliant Agent Infrastructures 267

ception and the cached item is refreshed) and the cache replacement policy is
the usual Least Recently Used one.

JADE ACC can also be deployed on its own, without a complete agent con-
tainer. This is meant to enable users to build and deploy agent level gateways
and firewalls: a standalone ACC lives within a JVM that can route and filter
ACL messages but cannot host FIFA agents.

4.2 Agent Model
FIPA specifications state nothing about agent internals, but when JADE was

designed and built they had to be addressed. A major design issue is the exe-
cution model for an agent platform, both affecting performance and imposing
specific programming styles on agent developers. As will be shown in the
following, JADE solution stems from the balancing of forces from ordinary
software engineering guidelines and theoretical agent properties.

A distinguishing property of a software agent is its autonomy; an agent is not
limited to react to external stimuli, but it’s also able to start new communicative
acts of its own. A software agent, besides being autonomous, is said to be
social, because it can interact with other agents in order to pursue its goals or
can even develop an overall strategy together with its peers.

FIPA standard bases its ACL on speech-act theory (Searle, 1969) and uses a
mentalistic model to build a formal semantic for the performatives agents ex-
change. This approach is quite different from the one followed by distributed
objects and rooted in design by contract (Meyer, 1997); a fundamental differ-
ence is that invocations can either succeed or fail but a request speech act can
be refused if the receiver is unwilling to perform the requested action.

Trying to map the aforementioned agent properties into design decisions,
we can say:

Agents are autonomous then are active objects;

Agents are social then intra-agent concurrency is needed;

Agent messages are speech acts then asynchronous messaging must be
used; and

Agents can say “no” then peer-to-peer communication model is needed.

The autonomy property requires each agent to be an active object (Lavender
and Schmidt, 1996) with at least a Java thread, to proactively start new conver-
sations, make plans and pursue goals. The need for sociality has the outcome
of allowing an agent to engage in many conversations simultaneously, dealing
with a significant amount of concurrency.

The third requirement suggests asynchronous message passing as a way to
exchange information between two independent agents, that also has the ben-

www.manaraa.com

268 Methodologies and Software Engineering forAgent Systems

efit of producing more reusable interactions (Singh, 1999b). Similarly, the last
requirement stresses that in a MAS the sender and the receiver are equals (as
opposed to client/server systems where the receiver is supposed to obey the
sender). An autonomous agent should also be allowed to ignore a received
message as long as he wishes; this advocates using a pull consumer-messaging
model (OMG, 2000a), where incoming messages are buffered until their re-
ceiver decides to read them.

The above considerations help in deciding how many threads of control are
needed in an agent implementation; the autonomy requirement forces each
agent to have at least a thread, and the sociality requirement pushes towards
many threads per agent. Unfortunately, current operating systems limit the
maximum number of threads that can be run effectively on a system. JADE
execution model tries to limit the number of threads and has its roots in actor
languages.

The Behaviour abstraction models agent tasks: a collection of behaviours
are scheduled and executed to carry on agent duties. Behaviours represent log-
ical threads of a software agent implementation. According to Active Object
design pattern (Lavender and Schmidt, 1996), every JADE agent runs in its
own Java thread, satisfying autonomy property; instead, to limit the threads
required to run an agent platform, all agent behaviours are executed coopera-
tively within a single Java thread. So, JADE uses a thread-per-agent execution
model with cooperative intra-agent scheduling.

JADE agents schedule their behaviour with a “cooperative scheduling on
top of the stack,” in which all behaviours are run from a single stack frame (on
top of the stack) and a behaviour runs until it returns from its main function
and cannot be preempted by other behaviours (cooperative scheduling).

JADE model is an effort to provide fine-grained parallelism on everyday-
hardware. A similar, stack based execution model is followed by Illinois Con-
cert runtime system for parallel object oriented languages (Karamcheti et al.,
1996). Concert executes concurrent method calls optimistically on the stack,
reverting to real thread spawning only when the method is about to block, sav-
ing the context for the current call only when forced to.

Choosing not to save behaviour execution context means that agent be-
haviours start from the beginning every time they are scheduled for execution.
So, behaviour state that must be retained across multiple executions must be
stored into behaviour instance variables. A general rule for transforming an
ordinary Java method into a JADE behaviour is:

Turn the method body into an object whose class inherits from Be-
haviour;

Turn method local variables into behaviour instance variables; and

Add the behaviour object to agent behaviour list during agent startup.

www.manaraa.com

FIPA-Compliant Agent Infrastructures 269

The above guidelines apply the reification technique (Johnson and Zweig,
1991) to agent methods, according to Command design pattern (Lea, 1997); an
agent behaviour object reifies both a method and a separate thread executing
it. A new class must be written and instantiated for every agent behaviour, and
this can lead to programs harder to understand and maintain. JADE applica-
tion programmers can compensate for this shortcoming using Java anonymous
inner classes; this language feature makes the code necessary for defining an
agent behaviour only slightly higher than for writing a single Java method.

JADE thread-per-agent model can deal alone with the most common situ-
ations involving only agents: this is because every JADE agent owns a sin-
gle message queue from which ACL messages are retrieved. Having multiple
threads but a single mailbox would bring no benefit in message dispatching.
On the other hand, when writing agent wrappers for non-agent software, there
can be many interesting events from the environment beyond ACL message
arrivals. Therefore, application developers are free to choose whatever con-
currency model they feel is needed for their particular wrapper agent; ordinary
Java threading is still possible from within an agent behaviour. The developer
implementing an agent must extend Agent class and implement agent-specific
tasks by writing one or more Behaviour subclasses. User defined agents inherit
from their superclass the capability of registering and deregistering with their
platform and a basic set of methods (e.g., send and receive ACL messages, use
standard interaction protocols, register with several domains). Moreover, user
agents inherit from their Agent superclass some methods to manage the agent
behaviours.

JADE contains ready made behaviours for the most common tasks in agent
programming, such as sending and receiving messages and structuring com-
plex tasks as aggregations of simpler ones. JADE recursive aggregation of
behaviour objects resembles the technique used for graphical user interfaces,
where every interface widget can be a leaf of a tree whose intermediate nodes
are special container widgets, with rendering and children management fea-
tures. An important distinction, however, exists: JADE behaviours reify exe-
cution tasks, so task scheduling and suspension are to be considered, too.

Thinking in terms of software patterns, if Composite is the main structural
pattern used for JADE behaviours, on the behavioural side we have Chain of
Responsibility: agent scheduling directly affects only top-level nodes of the
behaviour tree, but every composite behaviour is responsible for its children
scheduling within its time frame.

4.3 Management and Testing Tools
In addition to a runtime library and an agent programming library, JADE

offers some tools to manage the running agent platform and to monitor and

www.manaraa.com

270 Methodologies and Software Engineering forAgent Systems

debug agent societies. All these tools are implemented as agents themselves,
and they require no special support to perform their tasks, they simply rely on
JADE AMS. The general management console for a JADE agent platform is
called RMA (Remote Management Agent). The RMA acquires the informa-
tion about the platform and executes the GUI commands to modify the status
of the platform (creating new agents, shutting down peripheral containers, etc.)
through the AMS. On the one hand, the RMA asks the AMS to be notified
about the changes of state of platform agents, on the other hand, it transmits to
the AMS the requests for creation, deletion, suspension and restart received by
the user. The Directory Facilitator agent also has a GUI of its own, with which
the DF can be administered, adding or removing agents and configuring their
advertised services.

The graphical tools with which JADE users can debug their agents are the
Dummy Agent, the Sniffer Agent, and the Introspector Agent.

The Dummy Agent is a simple, yet very useful, tool for inspecting message
exchanges among agents. The Dummy Agent facilitates validation of an agent
message exchange pattern before its integration into a MAS and facilitates
interactive testing of an agent. The graphic interface provides support to edit,
compose and send ACL messages to agents, to receive and view messages from
agents, and, eventually, to save/load messages to/from disk.

The Sniffer Agent makes it possible to track messages exchanged in a JADE
agent platform. When the user decides to sniff a single agent or a group of
agents, every message directed to or coming from that agent or group is tracked
and displayed in the sniffer window, using a notation similar to UML Sequence
Diagrams. Every ACL message can be examined by the user, who can also save
and load every message track for later analysis.

The Introspector Agent, finally, is a very powerful tool that allows to debug
and introspect a running agent through the following functionalities: (i) mon-
itor and control the agent life-cycle; (ii) inspect all its exchanged messages,
both the queue of sent and received messages; and (iii) monitor the queue of
behaviours, including the possibility of executing a behaviour step-by-step, in
a similar way to a code debugger.

4.4 Applications

JADE is being used in a plethora of projects and applications, both from
the academic and the industrial communities. In particular, it has been used
and is used in four projects sponsored by the European Commission: FACTS,
CoMMA , LiMe and Agentcities.RTD.

FACTS is a project in the framework of the ACTS programme of the Eu-
ropean Commission that used JADE in two application domains. In the first
application domain, JADE provides the basis for a new generation TV enter-

www.manaraa.com

FIPA-Compliant Agent Infrastructures 271

tainment system. The user accesses a MAS to help him on the basis of his pro-
file that is captured and refined over time through the collaboration of agents
with different capabilities. The second application domain deals with agents
in collaboration, and at the same time competing, in order to help the user to
purchase a business trip. A Personal Travel Assistant represents the interests
of the user and cooperates with a Travel Broker Agent in order to select and
recommend the business trip.

LiMe is a Long Term Research Programme of the European Commission
under its “I-cubed” (Intelligent Information Interfaces) programme LiMe. The
goal of the project was to create a MAS for the enhancement of social in-
teraction within connected communities. JADE has successfully supported the
LiMe communicating agents for dynamic user profiling, collective information
dissemination and memory management for a 2-day field trial.

CoMMA is a going project in the framework of the IST programme of the
European Commission that is using JADE to help users in the management of
an organization corporate memory and in particular to facilitate the creation,
dissemination, transmission and reuse of knowledge in the organization. The
main objective of this project is to implement and test a Corporate Memory
Management framework based on agent technology. The innovative aspect
of the project is to integrate several emerging technologies that were gener-
ally used separately until now: agent technology, knowledge modeling, XML
technology, information retrieval techniques and machine learning techniques.
Integration of these technologies in one system is already a challenge yet an-
other challenge is the definition of the methodology supporting the whole de-
sign process. The project intends to implement the system in the context of
two scenarios (i) the insertion of new employees in the company; and (ii) the
technology monitoring.

Agentcities.RTD is a going project in the framework of the IST programme
of the European Commission. The project’s objectives are to create an on-
line, distributed testbed to explore and validate the potential of agent tech-
nology for future dynamic service environments. The project aims to pro-
duce the following important results: (i) an open, stable, scalable and reliable
network architecture that allows standards compliant agents to discover each
other, communicate and offer services to one another; (ii) models, methodol-
ogy and prototype solutions for the integration of business services into the
service environment; and (iii) practical methodologies for the application of
agent communication technologies (semantic models, ontology, expression of
content and protocols) to service modeling in open heterogeneous environ-
ment. Currently, the Agentcities network counts 160 registered platforms. The
platforms are based on more than a dozen of heterogeneous technologies, in-
cluding Zeus, FIPA-OS, Comtec (see http://ias.comtec.co.jp/ap), AAP
(see http://sf.us.agentcities.net/aap), Opal. More than 2/3 of them are

www.manaraa.com

272 Methodologies and Software Engineering for Agent Systems

based on JADE and its derived technologies, as LEAP (Adorni et al., 2001) and
BlueJADE (see https://sourceforge.net/projects/bluejade).

Rockwell Automation uses JADE for manufacturing control and automa-
tion. JADE is the middleware for their tool MAST – Manufacturing Agent
Simulation Tool (Marik et al., 2003) which allows to model manufacturing
systems as an holonic system with respect to the material-handling tasks, i.e.,
the transportation of entities among different manufacturing cells using dif-
ferent means of transport, mainly the conveyor belts and AGVs (Automated
Guided Vehicles).

5. Conclusions

In this chapter, we introduced FIPA-compliant development tools and, in
particular, we presented JADE (Java Agent DEvelopment framework), a soft-
ware environment to build agent systems for the management of networked
information resources in compliance with the last FIPA specifications.

FIPA is an international non-profit association of companies and organiza-
tions sharing the effort to produce specifications for generic agent technolo-
gies. FIPA does not promote a technology for just a single application domain
but a set of general technologies for different application areas that developers
can integrate to make complex systems with a high degree of interoperability.
FIPA started its activity in the 1997 and defined a set of specifications that are
now considered a “de facto” standard for agent interoperability.

For this reason, on the one hand, people working on agent development tools
and libraries consider to be “FIPA-compliant” a key feature of their products
and, on the other hand, people working on the realization of agent systems use
more and more FIPA-compliant development tools and software libraries.

In particular, JADE seems to be one of the most appreciated and used FIPA-
compliant development tool. It may be proved, by the number of users of any
part of the world that are using JADE today.

Acknowledgements

Thanks to all those people who have and continue to contribute to the de-
velopment of JADE. TILAB has been partially supported for this work by the
Italian M.I.U.R. through the Te.S.C.He.T. Project (Technology System for Cul-
tural Heritage in Tourism). University of Parma has been supported for this
work by TILAB and by the European Commission through the contract IST-
2000-28385 – Agentcities.RTD.

www.manaraa.com

Chapter 14

COORDINATION INFRASTRUCTURES
IN THE ENGINEERING
OF MULTIAGENT SYSTEMS

Andrea Omicini, Sascha Ossowski and Alessandro Ricci

Abstract On the theoretical side, coordination is a critical issue for MAS engineering,
since it deals with modelling and managing the ever growing complexity of the
agent interplay within a MAS. On the practical side, the availability of power-
ful and robust infrastructures is a key factor to enable and promote MAS as a
mainstream software engineering technology. By adopting Activity Theory as
a unifying framework for the many existing approaches to MAS coordination,
we put forward the notion of artifact as a key concept for infrastructures, from
which we derive some distinctive properties that a coordination infrastructure
should feature. Finally, we discuss how a principled approach to MAS engineer-
ing based on coordination infrastructures could be built around such a notion.

1. Introduction
Coordination is one of the key issues in the modelling and engineering of

complex systems, and has been the subject of numerous investigations in areas
such as Sociology, Economics and Organisational Theory. From an engineer-
ing point of view, the question of how to design computational mechanisms
that allow for efficient coordination is foremost: coordination is conceived as
a means to integrate various activities or processes in such a way that the re-
sulting ensemble shows desired characteristics and functionalities. The design
of coordination mechanisms is particularly challenging in the field of MAS, as
they are usually embedded in highly dynamic environments, and neither the
number nor the behaviour of agents can be directly controlled at design time.

In this chapter, we discuss how coordination infrastructures can be used as
a means to instill coordination in open multiagent systems. In particular, we
claim that additional high-level abstractions need to be integrated into agent-
oriented design methodologies in order to exploit the full potential of coordi-

www.manaraa.com

274 Methodologies and Software Engineering for Agent Systems

nation infrastructures, and to engineer coordinated MAS in open environments
in an efficient and principled manner.

The chapter is organised as follows. Section 2 argues that the key problem
of coordination engineering in MAS amounts to the governance of interaction
from both the agents’ and the designer’s point of view. Subsequently (sec-
tion 3) we outline the role of coordination infrastructures for this task and point
to shortcomings in current approaches. Setting out from findings in Activity
Theory, section 4 provides a uniform conceptual framework for many different
approaches to coordination, and introduces the notion of coordination artifact
as a key abstraction, that allows for a smooth conceptual integration of coor-
dination infrastructures into MAS design. Section 5 provides clues on how to
engineer MAS based on advanced coordination infrastructures within such an
integrated conceptual framework. Final discussion concludes the chapter.

2. Coordination in MAS

2.1 Models of Coordination in MAS

Maybe the most widely accepted conceptualisation of coordination in the
MAS field originates from work in the area of Organisational Science. (Mal-
one and Crowston, 1994), define coordination as the management of depen-
dencies between organisational activities. One of the many workflows in an
organisation, for instance, may involve a secretary writing a letter, an official
signing it, and another employee sending it to its final destination. The interre-
lation among these activities is modelled as a producer/consumer dependency,
which can be managed by inserting additional notification and transportation
actions into the workflow.

It is straightforward to generalise this approach to coordination problems in
multiagent systems. Obviously, the subjects whose activities need to be coor-
dinated (sometimes called coordinables) are the agents. The entities between
which dependencies arise (or objects of coordination) are often termed quite
differently, but usually come down to entities like goals, actions and plans. De-
pending on the characteristics of the MAS environment, a taxonomy of depen-
dencies can be established, and a set of potential coordination actions assigned
to each of them, e.g., (von Martial, 1992). Within this model, the process of co-
ordination is to accomplish two major tasks: first, a detection of dependencies
needs to be performed, and second, a decision respecting which coordination
action to apply must be taken. A coordination mechanism shapes the way that
agents perform these tasks (Ossowski, 1999).

The dependency model of coordination appears to be particularly well suited
to represent relevant features of a coordination problem in MAS. The TAEMS
framework presented by (Decker, 1996a), for instance, has been used to model
coordination requirements in a variety of interesting MAS domains. It is also

www.manaraa.com

Coordination Infrastructures in the Engineering of Multiagent Systems 275

useful to rationalise observed coordination behaviour along the lines of the
knowledge-level perspective put forward by (Newell, 1993). Still, when de-
signing coordination processes for real-world MAS, things are not as simple
as the dependency model may suggest. Dependency detection may come to
be a rather knowledge intensive task, which is further complicated by incom-
plete and potentially inconsistent local views of the agents. Moreover, making
timely decisions that lead to efficient coordination actions is also everything
but trivial. The problem becomes even more difficult when agents pursuing
partially conflicting goals come into play. In all but the most simple MAS,
the instrumentation of these tasks gives rise to complex patterns of interactions
among agents. The set of possible interactions is often called the interaction
space of coordination.

From a software engineering perspective, coordination is probably best con-
ceived as the effort of governing the space of interaction of a MAS (Busi et al.,
2001). When approaching coordination from a design stance, the basic chal-
lenge amounts to how to make agents converge on interaction patterns that
adequately (i.e., instrumentally with respect to desired features of the agents
and/or the MAS as a whole) solve the dependency detection and decision tasks.

2.2 Objective vs. Subjective Coordination in MAS

There are two ways of looking at the space of interaction: from the inside
and from the outside of the interacting entities. In the context of multiagent
systems, this amounts to say that we can look at interaction within a MAS from
either the viewpoint of an agent, or from the viewpoint of an external observer
not directly involved in the interaction. According to (Schumacher, 2001),
and (Omicini and Ossowski, 2003), these are called, respectively, subjective
and objective viewpoints over coordination.

From the subjective viewpoint of an agent, the space of interaction basi-
cally amounts to the observable behaviour of other agents and the evolution
of the environment over time, filtered and interpreted according to the individ-
ual agent’s perception and understanding. From the objective viewpoint, the
space of agent interaction is roughly given by the observable behaviour of all
the agents of a MAS and of the agent environment as well, and by their mutual
interactions – more precisely, by all their interaction histories (Wegner, 1997).
When adopting the acceptation of MAS coordination as the governance of the
agent interaction space, then the two different viewpoints lead to two different
ways of coordinating.

When looking at interaction from the individual viewpoint of an agent, sub-
jective coordination roughly amounts to (i) monitoring all interactions that are
perceivable and relevant to the agent, keeping track of their evolution over
time; and (ii) finding out which (sequence of) actions would bring the over-

www.manaraa.com

all state of the MAS (or, more generally, of the agent’s world) to match the
agent’s own goals. So, in general, the acts of an agent that coordinates within
a MAS are driven by its own perception and understanding of the behaviour
of the other agents’, capabilities and goals, as well as of the environment state
and dynamics.

On the other hand, when taking an external viewpoint over interaction in
a MAS – typically, the designer’s viewpoint –, objective coordination means
either directly or indirectly acting upon agent interaction so as to make the
resulting evolution of a MAS accomplish one or more of the observer’s (e.g.,
MAS designer’s) goals. In general, the acts of external observers – whether
they be MAS designers, developers, users, managers, or even agents working
at the meta-level – are influenced not only by their perception and understand-
ing of MAS agents and environment, but also by their a-priori knowledge of
the agents’ aims, capabilities and behaviour. Furthermore, some form of pre-
diction of the global behaviour of the MAS and its environments is often de-
sirable (Ossowski et al., 2002), so as to instill a coordination that is effective
over time from the standpoint of the user.

276 Methodologies and Software Engineering for Agent Systems

2.3 Implications for MAS Engineering
Subjective and objective coordination have a different impact over MAS en-

gineering. Subjective coordination affects the way in which individual agents
behave and interact, whereas objective coordination affects the way in which
interaction among the agent and the environment is enabled and ruled. So,
whereas the main focus of subjective coordination is the behaviour of agents
as (social) individuals immersed in a MAS, the emphasis of objective coordi-
nation lies more on the behaviour of a MAS as a whole.

When designing the architecture and the inner dynamics of single agents, the
subjective viewpoint on coordination is clearly the most pertinent one. How to
model other agents’ mental states and to predict their actions, how to interpret
and handle shared information in the agent system, when and why to move
from an agent environment to another, and so on – all these questions concern
subjective coordination, and affect the way in which the agents of a MAS are
designed, developed and deployed as individual entities. So, the viability of
approaches adopting a subjective coordination viewpoint to the engineering of
MAS strictly depends not only on the mental (reasoning, planning and delib-
eration) capabilities of the agents, but also on their ability to foresee the effect
of their actions on the environment, the behaviour of the other agents, and the
overall dynamics of the environment as well.

On the other hand, in principle an external observer does not directly inter-
act with the agents of a MAS. As a result, some capability to act on the space
of MAS interaction without dealing directly with agents is obviously required

www.manaraa.com

in order to enable any form of objective coordination. Given that agents are
typically situated entities, acting on the agent environment makes it possible
to affect the behaviour of an agent system without having to alter the agents
themselves. Under this acceptation, then, objective coordination deals with the
agent environment: modifying the virtual machine supporting agent function-
ing, changing resource availability and access policies, altering the behaviour
of the agent communication channel, be it virtual or physical, and so on – all
these are possible ways to influence and possibly harness the behaviour of a
MAS without directly intervening on individual agents and undermine the ba-
sic assumption of agent autonomy. The viability of objective coordination in
the engineering of agent systems depends then on the availability of suitable
models of the agent environment, and on their proper embodiment within agent
infrastructures. There, objective coordination would conceivably take on the
form of a collection of suitably expressive coordination abstractions, provided
as run-time coordination services by the agent infrastructure.

As discussed by (Omicini and Ossowski, 2003), the engineering of a MAS
requires that both subjective and objective coordination are blended together.
On the one side, in fact, a purely subjective approach to coordination in the
engineering of agent systems would endorse a mere reductionistic view, com-
ing to say that agent systems are compositional, and their behaviour is nothing
more than the sum of the individual’s behaviour – an easily defeasible argu-
ment, indeed. Among the many consequences, this would require global prop-
erties of the agent system to be “distributed” among individuals, providing nei-
ther abstractions nor mechanisms to encapsulate such properties. As a result,
the purely subjective approach would directly entail lack of support for design,
development, and, even more, deployment of agent systems’ global properties
– which would result in substantial difficulties for incremental development,
impractical run-time modification, and so on. On the other side, a purely ob-
jective approach to coordination in the engineering of agent systems would
endorse a rough holistic view – where only inter-agent dependencies and inter-
actions count, and individuals’ behaviour has no relevance for global system
behaviour. Among the many consequences, this would stand in stark contrast
with any notion of agent autonomy, and would prevent agents from featuring
any ability to affect the environment for their own individual purposes – no
space for anything resembling an agent left, in short.

In the end, all the above considerations suggest that any principled approach
to the engineering of agent systems should necessarily provide support for both
subjective and objective models of coordination, possibly integrating them in a
coherent conceptual framework, and providing at the same time a suitable sup-
port for all the phases of the engineering processes – in terms of coordination
languages, development tools, and run-time environments.

Coordination Infrastructures in the Engineering of Multiagent Systems 277

www.manaraa.com

Today, infrastructure is a fundamental notion for complex systems in gen-
eral, not only in computer science and engineering, but also in the context of
organisational, political, economical and social sciences. In its most general
acceptation, an infrastructure is defined as:

(Merriam-Webster) | (1) the underlying foundation or basic framework (as of
a system or organisation) (2) the permanent installations required for
military purposes; (3) the system of public works of a country, state,
or region; also: the resources (as personnel, buildings, or equipment)
required for an activity;

(Cambridge) | (4) the basic systems and services, such as transport and power
supplies, that a country or organisation uses in order to work effectively;

(The American Heritage) | (5) the basic facilities, services, and installations
needed for the functioning of a community or society, such as trans-
portation and communications systems, water and power lines, and pub-
lic institutions including schools, post offices, and prisons.

Every definition underlines the role of infrastructure as (part of) the environ-
ment that provides basic resources and critical services to complex systems
(such as organisations, communities, societies, countries) living on top of it. In
particular, definition (2) remarks the fact that an infrastructure is a persistent
entity: once installed, an infrastructure typically survives the many systems it
supports. Also, definitions (4) and (5) remark the key role of infrastructures:
their services typically cover critical system issues, and provide features that
individual system components could not afford to provide or obtain elsewhere.

In the context of MAS, infrastructure obviously plays a key role, given the
potential complexity of both the system components (agents) and the compo-
nent interplay (agent societies).

(Gasser, 2001), defines an infrastructure as

“a technical and social substrate that stabilises and rapidly enables instrumen-
tal (domain-centric, intentional) activity in a given domain. . . (solving) typical,
costly, commonly accepted community (technical) problems in a systematic and
appropriate ways ”

Here, it is important to emphasise the notion of infrastructure as a social, en-
abling support for providing MAS with cheap and systematic solutions to com-
mon problems.

Another interesting definition is provided by (Sycara et al., 2003):

“Agents in a MAS are expected to coordinate by exchanging services and infor-
mation, to be able to follow complex negotiation protocols, to agree on commit-

278 Methodologies and Software Engineering for Agent Systems

3. Infrastructures for MAS Engineering

3.1 On the Notion of Infrastructure

www.manaraa.com

ments and to perform other socially complex operations. We define the infras-
tructure of a MAS as the set of services, conventions, and knowledge that support
such complex interactions.”

In a more abstract acceptation than the ones above, the main role of infras-
tructures in MAS is to model and shape the agent environment, from the two
points of view (i) of the agents living in the MAS; and (ii) of MAS designers.
From the inner viewpoint of an individual agent, the infrastructure typically
provides the means to deal with the agent environment: to perceive and affect
its state and dynamics (in general), to access resources and services, to obtain
and store information, to interact with other agents (in particular). Typically, a
suitably expressive and well-engineered infrastructure allows agents to repre-
sent their environment only through the runtime abstractions provided by the
infrastructure, and to modify the agent environment according to the agent’s
needs and goals through infrastructure services. From the external viewpoint
of a human designer, MAS are typically open systems, both in terms of the
unpredictability of their environment (due to components and interactions not
under the control of MAS designers), and of the dynamism of both MAS struc-
tures (e.g., the set of agents in a MAS) and MAS processes as well (e.g., the co-
ordination activities within a MAS). Infrastructures are then the suitable place
for designers to embed elements of control of MAS despite their inherent open-
ness: such control can be exerted by means of runtime abstractions provided
by the infrastructure that can embody and enforce interaction constraints, co-
ordination laws and social norms. Even more, once they are suitably described
and made accessible to agents, the same runtime abstractions can be exploited
by intelligent agents in order to represent coercive structures of a MAS, and
to act upon its global behaviour by introducing and/or modifying constraints,
laws and norms (Omicini and Ricci, 2003).

Infrastructures play then a key role in the engineering of MAS, too. This
is quite obvious when considering the last stages of the engineering process,
that is, the development and deployment of MAS. Nevertheless this also holds
when taking the early stages into account, that is, the modelling and design
of MAS: the abstractions provided by the infrastructure are the most natural
candidates to be adopted and exploited in the design of MAS structures and
activities, which are then to be engineered on top of such abstractions. So,
runtime abstractions should be flexible enough to support the engineering of
heterogeneous systems, and – at the same time – effective in minimising the
gap between the design and development / deployment / runtime of systems.

Coordination Infrastructures in the Engineering of Multiagent Systems 279

The stress is here on the support of complex agent (social) interplay, which is
expressed in terms of services, convention and knowledge.

3.2 The Role of MAS Infrastructure

www.manaraa.com

280 Methodologies and Software Engineering for Agent Systems

Figure 14.1. MAS infrastructure levels, according to (Sycara et al., 2003)

In this context, the tools provided by an infrastructure are fundamental to
enable the manipulation of the abstractions through all the engineering stages,
in particular at runtime. The definition of the engineering tools is a primary
issue, that should be necessarily inspired and driven by the model embodied
by the MAS infrastructure itself (Denti et al., 2002).

In the end, MAS infrastructures and tools play an essential engineering role
by keeping abstractions alive through the whole engineering process, thus en-
abling software engineers to first design and then observe and act on MAS
structures and processes at runtime, working upon abstractions adopted and
exploited for the design of a MAS. This feature is particularly important to
support forms of online engineering (see chapter 18), i.e., the capability of sup-
porting system design / development / evolution while the systems are running
– a particularly relevant feature in the context of MAS, given their intrinsic
complexity and openness.

3.3 Enabling vs. Governing Infrastructures
As discussed above, infrastructures are useful to encapsulate and support

critical features and properties of MAS; these properties typically concern the
interaction dimension. For this extent, current MAS infrastructures can be

www.manaraa.com

considered enabling infrastructure, since they provide abstractions that basi-
cally enable agent interaction at different levels: from communication to in-
teroperability, to basic interaction services. This is apparent when considering
the abstract architecture of two of the most important infrastructures currently
adopted for MAS development and deployment: RETSINA (Sycara et al.,
2003) (bottom of Figure 14.2) and JADE (Bellifemine et al., 2001) (top of Fig-
ure 14.2). There, in fact, services like agent communication, inter-operation,
security, naming, location, etc., are necessary preconditions that make it possi-
ble for agents to live, coexist and interact within a MAS. Enabling infrastruc-
tures, then, basically define the nature of the agent interaction space within a
MAS.

However, the increasing complexity and articulation of MAS for today’s
application scenarios call for a most effective engineering support from in-
frastructure, beyond the mere enabling of agent interaction. A well known
example are Electronic Institutions (Noriega and Sierra, 2002): the social and
normative capabilities required to infrastructures supporting eInstitutions goes
far beyond the services provided by general purpose MAS enabling infrastruc-
tures, and cannot be straightforwardly engineered on top of it. Another exam-
ple comes from team-oriented coordination: in order to be independent from
the specific agent model, the TEAMCORE approach introduces the PROXY
abstraction, an infrastructure component provided to agents for managing au-
tomatically all coordination dependencies with respect to the teams that agents
belong to (Tambe et al., 2000). Similar team-oriented capability has been
added to RETSINA by enhancing its Individual Agent Architecture (Giampapa
and Sycara, 2002): in this way, contrary to the TEAMCORE approach, no real
infrastructure support is provided from the infrastructure to team-oriented co-
ordination, since the team-oriented capability is obtained by relying on aug-
mented capabilities of the individual agents.

In the end, current general purpose MAS infrastructures typically lack suit-
ably abstractions to govern agent interaction. This seems instead a fundamen-
tal feature for enabling the specification and enactment of social norms, but
also – more generally – for defining and executing social activities, such as
agent coordination. In other words, complex system engineering calls for gov-
erning infrastructures, providing flexible and robust abstractions to model and
shape the agent interaction space, in accordance with the social and normative
objectives of systems.

Governing infrastructures become the natural loci where to embody a con-
ceptual framework that uniformly accounts for organisation, coordination and
security of MAS altogether (Omicini et al., 2003). From the organisational
point of view, infrastructures are to provide explicit abstractions for modelling
the structure of an organisation and its rules – e.g., using the notion of role and
related permissions to access to resources. This is the case, for instance, of

Coordination Infrastructures in the Engineering of Multiagent Systems 281

www.manaraa.com

282 Methodologies and Software Engineering for Agent Systems

Figure 14.2. (top) FIPA reference model for Agent Platform, adopted by JADE (see chap-
ter 13) – where the ACC is the Agent Communication Channel Component – and (bottom)
RETSINA functional levels (Sycara et al., 2003)

www.manaraa.com

the information system infrastructure that support the RBAC model (Sandhu
et al., 1996), which is attracting attention also in the context of MAS. From the
coordination point of view, infrastructure support can be described effectively
by adopting the notion of coordination as a service (Omicini and Ossowski,
2003; Viroli and Omicini, 2003): according to this vision, the infrastructure
itself is the provider of runtime (coordination) abstractions designed for specif-
ically supporting the specification, execution and maintenance of MAS social
activities. These abstractions become a fundamental tool to face the engi-
neering complexity of coordination in MAS: both from the designer’s and the
agents’ point of view, the coordination burden is distributed between agents
and the specialised services provided by the infrastructure. The expressiveness
and flexibility of coordination abstractions strongly influence the engineering
of social activities, and, consequently, the complexity of the solutions adopted
for the challenging application scenarios. Since they are part of the infrastruc-
ture, these coordination abstractions are typically expected to be robust and
reliable, and specifically designed to support a critical activity as coordination
is.

Two observations are worthwhile here. Firstly, the evolution from enabling
to governing infrastructures can be devised also in other computer science
fields, characterised as well by complex organisations and collaboration ac-
tivities: CSCW and Workflow Management are relevant examples. Especially
in the CSCW context the need for suitable infrastructure support for coordina-
tion has already emerged as a fundamental issue. (Schmidt and Simone, 1996),
for instance, identify basic properties that coordination abstractions provided
by an infrastructure should feature. Secondly, the approach of coordination as
a service has also a deep impact on AOSE methodologies, since coordination
abstractions – as they embody the social aspect of MAS – are meant to be-
come explicitly subject of all the engineering stages, as it happens in SODA
methodology (Omicini, 2001).

Coordination Infrastructures in the Engineering of Multiagent Systems 283

4. Modelling Coordination Infrastructures with Activity
Theory

The research on coordination infrastructures is a primary issue also in other
disciplines focusing on complex collaborative works in articulated organisa-
tion, such as CSCW and organisational science. The models and theories
adopted and developed in those contexts can provide then useful insight for
the MAS context. Accordingly, we considered Activity Theory very effective
to frame and analyse coordination activities inside an organisation context, and
the infrastructure support they require.

www.manaraa.com

Once the many different coordination approaches have been properly under-
stood and classified, a uniform conceptual framework is required that suitably
reconciles both objective and subjective coordination, and helps putting them
in the best perspective in the context of MAS engineering. To this end, (Ricci
et al., 2003) adopt Activity Theory in order to shed some light on the role of
subjective and objective approaches to coordination engineering, and their mu-
tual relationship.

Activity Theory (AT henceforth) is a social psychological theory about the
developmental transformation and dynamics in collective human work activ-
ity (Leontjev, 1978; Vygotskij, 1978). AT focuses on human activities, which
are distinguished by their respective (physical and ideal) objects, that give them
their specific directions, i.e., the objectives of the activities. Cooperation is un-
derstood as a collaborative activity, with one objective, but distributed onto
several actors, each performing actions accordingly to the shared objective.
Explicit norms and rules regulate the relationships among the individual par-
ticipants’ work.

Central to AT is the notion of artifact as a mediator for any sort of interac-
tion in human activities: artifacts can be either physical or cognitive, such as
operating procedures, heuristics, scripts, individual and collective experiences,
and languages. Artifacts embody a set of social practise: their design reflects
a history of particular use. As mediating tools, they have both an enabling
and a constraining function: on the one hand, artifacts expand out possibili-
ties to manipulate and transform different objects, but on the other hand the
object is perceived and manipulated not ‘as such’ but within the limitations
set by the tool. (Ricci et al., 2003) define the notion of coordination artifact
to identify artifacts that are used in the context of collaborative activities in
particular, mediating the interaction among actors involved in the same social
context. Coordination artifacts can be embodied or disembodied, referring to
respectively physically or cognitive/psychological artifacts. A similar concept
can be found also in the CSCW context, with the notion of coordinative arti-
facts (Schmidt and Simone, 2000). It is worth noting the different acceptation
of the term artifact as used in AT and CSCW with respect to the traditional
software engineering context (Barthelmess and Anderson, 2002): in the latter,
the term artifact is typically used to refer to documents (or deliverables) that
are produced throughout a process, and the term tool is used to identify the
means to perform operation on artifacts.

As far as collaborative activities are concerned, AT identifies three hier-
archical levels defining their structure: co-ordinated, co-operative, and co-
constructive (Bardram, 1998; Engeström et al., 1997).

284 Methodologies and Software Engineering for Agent Systems

4.1 Activity Theory as a Framework for MAS
Coordination

www.manaraa.com

The co-ordinated aspect of work captures the normal and routine flow of
interaction. Participants follow their scripted roles, each focusing on the
successful performance of their actions, implicitly or explicitly assigned
to them; they share and act upon a common object, but their individual
actions are only externally related to each other. Scripts coordinating
participants’ actions are not questioned or discussed, neither known and
understood in all their complexity: in this stage actors act as “wheels in
the organisational machinery” (Kuutti, 1991), and co-ordination ensures
that an activity is working in harmony with surrounding activities.

The co-operative aspect of work concerns the mode of interactions in
which actors focus on a common object and thus share the objective
of the activity; unlike the previous case, actors do not have actions or
roles explicitly assigned to them: with regard to the common object,
each actor has to balance his/her own actions with other agent actions,
possibly influencing them to achieve the common task. So, in this case
the object of the activity is stable and agreed upon: however the means
for realising the activity is not yet defined.

The co-constructive aspect of work concerns interactions in which actors
focus on re-conceptualising their own organisation and interaction in re-
lation to their shared objects. Neither the object of work, nor the scripts
are stable, and must be collectively constructed, i.e., co-constructed.

Coordination Infrastructures in the Engineering of Multiagent Systems 285

It is worth here to notice that in the analysis of collaborative activities, AT em-
phasises that a collaborative activity is not to be seen in general at one single
level: co-ordination, co-operation, and co-construction are instead to be inter-
preted as analytical distinctions of the same collaborative activity, concurring
in different times and modes to its development.

In the context of MAS coordination, the three levels identified by AT can be
re-interpreted as follows (Figure 14.3):

Co-construction – agents understand and reason about the (social) ob-
jectives (goals) of the MAS, and define a model of the social tasks re-
quired to reach them. This implies also identifying the interdependencies
and the interactions to be faced and managed;

Co-operation – agents design and define the coordination artifacts –
either embodied (coordination media) or disembodied (plans, interac-
tion protocols, etc.) – useful to carry on the social tasks and to manage
the interdependencies and interactions devised out at the previous (co-
construction) stage; and

www.manaraa.com

286 Methodologies and Software Engineering for Agent Systems

Figure 14.3. Levels of a collaborative activities as identified by Activity Theory and their
relationship with coordination artifacts

Co-ordination – agents exploit the coordination artifacts, and then the
activities to manage interdependencies and interactions, either designed
a-priori or planned at the co-operation stage, are enforced/automated.

At every level both top-down and bottom-up approaches are present: the for-
mer in modelling/designing/enacting social tasks, and the latter in identifying
and managing dependencies and interactions. Both approaches rely on the en-
gineering of coordination artifacts, be it embodied or disembodied.

Subjective approaches are fundamental for the co-construction and, in par-
ticular, the co-operation stage. Here it is necessary to reason about what kind
of coordination is required, what kind of coordination laws must be developed
to manage interactions and fulfil the social tasks identified in co-construction
stage. Agent intelligence is useful to cooperatively build – by means of nego-
tiation and high level (semantics driven) interaction protocols – effective co-
ordination artifacts to be used in the co-ordination stage, be they disembodied
such as interaction protocols or embodied such as coordination media. Instead,
objective coordination is fundamental for the co-ordination stage, where coor-
dination must be enacted in the most automated, fluid, and possibly optimised
manner. The coordination medium abstraction (and coordination laws defining
its behaviour) represents effectively the concept of embodied coordination arti-
fact (and related mediating tools), embedding and enacting in the co-ordination
stage the social laws and interaction constraints established in the co-operation
stage.

Drawing a parallel between AT artifacts and coordination media may help
to better recognise the role of the media inside MAS: as the artifacts, coordi-

www.manaraa.com

Coordination Infrastructures in the Engineering of Multiagent Systems 287

nation media first are used to enable the interactions among the agents, and
then to mediate them in the most automated manner. As the artifacts, media
become the place where the coordination knowledge of the MAS is explicitly
represented (Ossowski and Omicini, 2002), where it is enacted and can be fur-
ther inspected. So, media become the source of the “social intelligence” that
actually characterises the systemic/synergistic (as opposed to compositional)
vision of MAS (Ciancarini et al., 2000). In this context, coordination laws be-
come the coercive structures that can be used to tune and adapt dynamically
such a collective intelligence (Ossowski, 1999).

4.2 Artifacts and Coordination Infrastructures
Quite frequently in the context of MAS, agents are the only abstraction used

for system engineering – especially at the development and deployment stage.
The matchmaking and brokering services required by any open MAS, for in-
stance, are usually provided by middle-agents (Klusch and Sycara, 2001). Ac-
cordingly, these agents constitute a suitable way to embody AT artifacts at the
co-ordination stage. So, in principle, they may take over the role of coordina-
tion media in the mediation of agent interactions.

However, AT clearly distinguishes between ontological properties of the ar-
tifacts (as well as related mediating tools) and the actors designing/developing
(co-operation stage) and exploiting (co-ordination stage) the artifacts. This
suggests to draw a similar distinction between agents and coordination me-
dia. As opposed to agents, the main properties that a coordination medium is
expected to exhibit are the following:

Inspectability – the behaviour of a coordination medium should be in-
spectable, both for human and artificial agents. Moreover, coordination
specifications should be described in a declarative way, possibly with a
formally defined semantics, to allow for their interpretation at run-time.

Efficiency/specificity – a coordination medium should be specialised in
the management of interactions, in order to maximise performance in
the application of the coordination rules. Moreover, a medium should be
specialised to support the concurrent actions (communications) of mul-
tiple agents, possibly providing security, reliability and fault tolerance
capabilities.

Predictability – the behaviour of a coordination medium should exactly
reflect the coordination laws upon which it has been forged (autono-
mous, unpredictable behaviour is typically not desired). A formal se-
mantics should be defined for the coordination model to precisely define
the effect of the coordination laws on the state of the medium and, more
generally, on the agent interaction space.

www.manaraa.com

288 Methodologies and Software Engineering for Agent Systems

Malleability – a coordination medium should be malleable, i.e., it should
allow its behaviour to be forged and changed dynamically at execution
time, according to the need. This property is fundamental for facing the
openness of MAS environment, in terms of unpredictable events caus-
ing coordination breakdowns or the support of coordination service im-
provement or enhancement. A similar concept is defined for coordina-
tion mechanisms in the context of CSCW (Schmidt and Simone, 1996).

Most of the above properties are typically not featured by middle-agents, as
they are not featured by agents in general. In fact, agents are generally sup-
posed to be autonomous, pro-active, situated entities that interact by means of
a general-purpose and high-level communication language (Wooldridge and
Jennings, 1995a). As a result, for instance, an agent cannot be supposed to be
inspectable. In addition, the general purpose acceptation of the agent notion
typically puts limits to predictability, specificity and efficiency.

So, the most obvious embodiment of the notion of artifact for agent coor-
dination is represented by a dedicated abstraction, provided at design time by
the coordination model and enacted at runtime by the corresponding coordi-
nation infrastructure: that is, an inspectable, efficient, specific, predictable and
dynamically forgeable coordination medium that could be used by the agent
designer to govern the agent interaction space, but also by intelligent agents to
perceive, understand and possibly change the overall MAS behaviour.

4.3 Balancing Coordination in MAS Engineering

Another central notion in AT is the dynamic transformation between levels
in collaborative activities. Correspondingly, central to MAS coordination is the
support for dynamic transformation from co-operation – that is, the subjective
coordination level – to co-ordination (that is the objective coordination level),
and vice versa. This is particularly relevant in the context of open and dynamic
systems, where the environment is frequently subject to change, and collective
goals, norms, and organisational rules should adapt accordingly. This form of
dynamism is captured by two basic transitions, the reflection and the reification
of coordination, which must be supported dynamically during system execu-
tion. These transitions are strictly related to the transformations seen in the AT,
and account for:

Reification – in this transition, coordination laws that have been de-
signed and developed in the co-operation stage are reified in coordina-
tion media: intelligent agents forge the behaviour of coordination media
in order to reflect the social rules established in the co-operation stage,
and to be used as artifacts in the co-ordination stage. It is worth not-
ing that coordination media are meant to embed not only the rules pro-
moting cooperation among agents, but also the laws ruling interactions,

www.manaraa.com

Coordination Infrastructures in the Engineering of Multiagent Systems 289

Figure 14.4. The coordination engineering segment: all coordination in agents (purely subjec-
tive, left end), all coordination in media (purely objective, right end)

useful to represent also norms and environment constraints, either medi-
ating agent competitive (non cooperative) behaviour, or harnessing self-
interested agent behaviours so as to achieve global MAS goals without
affecting agent autonomy.

Reflection – in this transition, the behaviour of the coordination media
deployed in co-ordination stage is inspected and possibly understood.
Agents can retrieve the coordination laws underlying medium behaviour,
and relate them to the history of MAS evolution, in order to either evolve
them according to changes in coordination policies or in environmental
conditions, or learn how to exploit the artifacts in a more effective and
efficient way.

The role of coordination artifacts (and correspondingly of coordination infras-
tructures enacting them) is then central to the engineering of MAS, since they
make it possible to balance dynamically subjective and objective coordination,
providing the tools to establish at runtime the distribution of the burden coor-
dination between media and agents. As a useful picture, we can draw an imag-
inary “coordination engineering segment” (see Figure 14.4), whose extremes
represent the two opposite situations where on the one side (left in Figure 14.4)
all coordination activity are carried on by agents, and on the other side (right
in Figure 14.4) all the coordination burden is charged upon the media provided
by the infrastructure. Conceptually, the main issue here is to provide the means
to devise out at design time where the best “coordination engineering point”
of the MAS lays in the coordination segment, that is, the best distribution of
coordination activities between subjective to objective orientation, and then to
move the coordination point of MAS at execution time, possibly in the follow-
up of changes in the MAS environment, to tune the system’s performance, or
to modify its behaviour. The position of the point depends on both, the co-

www.manaraa.com

ordination scenario taken into account and the dynamics inside that scenario:
the more automation/prescription is required and the more well-defined social
rules are (such as for workflow systems), the more coordination knowledge
can be represented and enacted through the coordination media. Accordingly,
the less possible (or feasible) it is to clearly identify collective rules and con-
straints in the coordination context, the more the individual agents are to be
charged with the coordination burden. As a result, automatable activities are
carried out by specialised and efficient coordination artifacts provided by the
infrastructure, whilst activities requiring intelligent deliberative capabilities are
assigned to intelligent agents. Indeed, the capability of balancing task automa-
tion and cooperation flexibly is among the most important requirements for
state-of-the-art systems for workflow management, supply chain management,
and CSCW (Dayal et al., 2001; Nutt, 1996). The ability to change the “engi-
neering point” of coordination dynamically is also of special importance for
open MAS, where the environment can unpredictably change, and the overall
structure and functionality of the system may evolve in time.

The above considerations lead to some additional requirements for coor-
dination infrastructures. In particular, in order to support these capabilities,
coordination infrastructures should provide the means (languages and tools)
for enabling coordination reflection (from objective to subjective transition),
to inspect the coordination laws defining medium behaviour, and coordination
reification (from subjective to objective transition), defining/programming the
behaviour of the coordination media.

290 Methodologies and Software Engineering for Agent Systems

5. Engineering MAS with Coordination Infrastructures

5.1 Impact on AOSE Methodologies
The availability of coordination infrastructures has a considerable impact on

the process of MAS engineering, and therefore should play a significant role
within agent-oriented methodologies. As already mentioned, infrastructures
impact on both the final stages of the engineering process (development and
deployment) as well as on the analysis and design stages, by means of the
abstractions provided by the infrastructure model to represent the environment
and to support coordination and organisation.

It is not without reason that AT, which we use as a meta-model to frame
the basic elements of a MAS infrastructure model, is primarily used as an an-
alytical tool for understanding collaborative work in complex organisational
contexts, and as a design tool to improve them. In such contexts, AT makes it
possible to face the complexity of the social activities by clearly separating in-
dividual and collective activities, and then by clearly identifying and designing
the artifacts required to support both of them. Here we are interested in partic-

www.manaraa.com

ular in artifacts supporting social activities, which we denoted as coordination
artifacts.

Along this line, we can devise a correspondence between the levels identi-
fied by AT for collaborative activities – co-construction, co-operation and co-
ordination – and the engineering stages as typically found in (agent-oriented)
software engineering methodologies, i.e., analysis, design, development and
runtime. Generally speaking, individual and social tasks are identified and
described in the analysis and design stages of these methodologies (Omicini,
2001; Zambonelli et al., 2001a). Individual tasks are typically associated with
one specific competence of the system, related to the need to affect a specific
portion of the environment and carry out some simple task. Each agent in
the system is assigned to one or more individual tasks, and assumes full re-
sponsibility for their correct and timely completion. From an organisational
perspective, this corresponds to assigning each agent a specific role in the or-
ganisation. Conversely, social tasks represent the global responsibilities of the
agent system. In order to carry out such tasks, several possibly heterogeneous
competences usually need to be combined. The design of social tasks leads
to the identification of global social laws that have to be respected and/or en-
forced by the society of agents, to enable the society itself to function prop-
erly and in accordance with the expected global behaviour (Zambonelli et al.,
2001a).

Given this picture, it is possible to identify a correspondence between the
analysis stage (where individual and, in particular, social tasks are identified)
and the co-construction level, where the social objectives of the activities are
shaped. Then, the identification of the social laws required to achieve the social
tasks can be seen as a first step in the co-operation level. This level roughly
corresponds to the design and development stages of the engineering process:
coordination artifacts are the abstractions which make it possible to design and
develop social tasks. At the co-operation level such artifacts are designed and
developed to embody and enact – as governing abstractions provided by the
infrastructure – the social laws and norms previously identified. Finally, the
deployment and runtime stages correspond to the co-ordination level, when
the coordination artifacts are instantiated and exploited.

A relevant aspect that it is worth to be pointed out here is that, in the case of
AT, the three levels are distinct analytical moments that can be applied continu-
ously, since a collaboration activity is considered to be continuously under de-
velopment, given the intrinsic openness of the environment and the dynamism
of organisations. Then, the infrastructure can play a fundamental role not only
in providing abstractions and means for the individual engineering stages, but
also to support the dynamism between these stages, continuously, promoting a
form of online engineering – a process that appears as unavoidable for the en-
gineering of complex open system (Fredriksson et al., 2003) (see chapter 18).

Coordination Infrastructures in the Engineering of Multiagent Systems 291

www.manaraa.com

In the context of MAS, organisation and coordination are strictly related
and interdependent issues, and so MAS coordination infrastructures have a
fundamental engineering role also in MAS organisation (Omicini and Ricci,
2003),

Generally speaking, organisation mainly deals with the structure and the
long-term relationships between the components of a system, while coordina-
tion mainly concerns the processes and the dynamic interactions between the
components of a system – often related to roles that usually frame agents in the
structure/pattern of system organisation. In any case, both organisation and co-
ordination concern and affect the way in which agents interact with each other,
so that conceiving and representing them in the same framework is likely to
provide several advantages. Conceptual economy is obviously the first benefit:
for instance, the notion of role, usually introduced by organisational models,
typically constrains agent actions, which is one of the corner-stones of coor-
dination. Also, a common framework is the most obvious way to consistently
support adaptation and evolution of organisation and coordination within an
agent society: for instance, by managing explicitly the dependencies between
the changes in the organisational settings (such as removal of a role, or changes
in its capabilities in terms of interaction protocols) and the related effects on
coordination activities. Even more, there are system aspects that can be mod-
elled and engineered in their complex articulation only by considering orga-
nisation and coordination settings at the same time: security and electronic
institutions are well-known examples. In particular, the multiple aspects re-
lated to the security issue in MAS can be tackled in a coherent and satisfactory
framework only by covering the whole spectrum that ranges from organisation
– with issues related to system structures and relations among the components
– to coordination – with issues related to collective processes. Facing security
modelling and engineering within this range increases system conceptual in-
tegrity, by promoting the reuse of abstractions such as roles, permissions, and
societies – which have already proved to be effective in the context of orga-
nisation and coordination – in order to enforce complex and dynamic security
policies.

Even though the need for run-time liveness of design abstractions supported
by the MAS infrastructure follows from basic system engineering consider-
ations, it has an impact on the engineering of intelligent systems (Omicini,
2001). When dealing with MAS organisation abstractions, their liveness al-
lows in principle to dynamically inspect and, possibly, change or adapt it.
This is obviously useful for promoting human activities over systems such as
monitoring and incremental evolution: however, when dealing with intelligent

292 Methodologies and Software Engineering for Agent Systems

5.2 Coordination, Organisation and Security in the Same
Engineering Context

www.manaraa.com

systems, the liveness of (organisation/coordination) abstractions is particularly
relevant since the properties they embody can be in principle made available
not only to humans, but also to intelligent agents. This clearly promotes self-
reconfiguration and self-adaptation of intelligent systems: in fact, once an in-
telligent agent is enabled to inspect the social structure, and allowed to change
it, it may reason about the organisation, make inferences, and possibly plan its
evolution, for instance to fix some undesired behaviour, or to adapt to environ-
mental changes (Omicini and Ricci, 2003).

Summing up, it is both possible and useful to conceive a MAS infrastructure
that supports the modelling and enactment of organisation aspects in synergy
with the coordination ones, by keeping the abstractions alive throughout the
whole engineering process: that is, by providing MAS engineers with design
abstractions also suitable for organisations (such as the notions of role, society,
group) and then enabling their management (construction, inspection, adapta-
tion) at both development and execution time. This synergy makes it possible
to model and enact coordination activities taking into account the organisation
context where they take place, characterised by some structure – in terms of
roles, groups, or societies – and organisation rules, such as access control poli-
cies. Agents participate to social activities always by virtue of their position
(roles) inside the organisation, which define what kind of coordination arti-
facts they can access and use, and what kind of actions they are allowed (or
forbidden) to do on them.

As an example, introduced in (Omicini, 2002), the Agent Coordination Con-
text (ACC) abstraction is an infrastructural notion suitable for the integration of
organisation issues in a coordination context, especially in the case of artifact-
based coordination infrastructure. The ACC notion is meant to model and
enact agent position inside an organisational context acting as its environment,
so as to define and constrain the agent actions on resources, in this case coor-
dination artifacts (Omicini et al., 2003). Therefore, it is possible to conceive
a MAS infrastructure which fruitfully adopts ACC to model and rule agent
presence inside the organisation, and, more specifically, agent participation to
social activities; this participation includes accessing and using the coordina-
tion artifacts as part of organisation resources.

Coordination Infrastructures in the Engineering of Multiagent Systems 293

6. An Example of a Coordination Infrastructure
TuCSoN is an example of coordination infrastructure for MAS designed

according the principles described in previous sections. Figure 14.5 gives a
layered perspective of the infrastructure architecture, with organisation and
coordination layer in evidence.

TuCSoN provides services for the specification and enactment of coordi-
nation in MAS (Omicini and Zambonelli, 1999), according to the coordination

www.manaraa.com

as a service approach. Coordination services are embodied in tuple centres,
that are design/runtime coordination abstractions provided to agents by the in-
frastructure in order to enable and govern their interaction (Omicini and Denti,
2001). More precisely, tuple centres are programmable tuple spaces (Omicini
and Denti, 2001), that is, sort of reactive logic-based blackboards; agents inter-
act by writing, reading, and consuming tuples – ordered collections of hetero-
geneous information chunks – to/from tuple centres via simple communication
operations (out, rd, in) which access tuples associatively. While the behaviour
of a tuple space in response to communication events is fixed and pre-defined
by the model, the behaviour of a tuple centre can be tailored to the applica-
tion needs by defining a suitable set of specification tuples, which define how
a tuple centre should react to incoming/outgoing communication events, and
determine the coordination laws embodied by tuple centres. Tuple centres then
can be seen as general-purpose customisable coordination artifacts, whose be-
haviour can be dynamically specified, forged and adapted so as to automate the
co-ordination stage among agents using such artifacts.

The basic infrastructure model is currently being extended to support a role-
based organisation model (Omicini and Ricci, 2003). This extension is realised
by embodying the ACC notion as first class runtime abstraction (Omicini,
2002). In order to join dynamically a specific organisation, an agent must
negotiate and obtain an ACC, as a private interface to access and use the tuple
centres of the organisation. The actions enabled by the ACC depend on the
active roles the agent is playing inside the organisation.

294 Methodologies and Software Engineering for Agent Systems

6.1 Balancing Coordination with TuCSoN

In the case of TuCSoN, the capability of balancing coordination between
subjective and objective as discussed in section 4 is achieved by means of the
tuple centre model, and the tools provided by the infrastructure. The coordi-
nation laws that define the behaviour of the coordination media (tuple centres)
expressed as specification tuples can be inspected and changed dynamically by
human and artificial agents by means of specific tools. We are verifying the
effectiveness of this approach in scenarios such as pervasive computing – to
engineer the social intelligence as required by smart environments – and inter-
organisational workflow management systems (Ricci et al., 2002). In the last
context, for instance, tuple centres have been used to play the role of the work-
flow engines, and workflow rules have been expressed as coordination laws
embedded within tuple centres. Each workflow engine (mapped onto a tuple
centre) acts then as a coordination artifact providing fluid coordination of the
individual tasks executed autonomously by human and artificial agents. So, (i)
workflow rules are inspectable by accessing the specification tuples embedded
in tuple centres (reflection stage); (ii) workflow rules are modifiable at runtime

www.manaraa.com

Coordination Infrastructures in the Engineering of Multiagent Systems 295

Figure 14.5. The layered architecture of a coordination infrastructure: the TuCSoN case

– as a consequence of unexpected exceptions, or changes in the business envi-
ronment – by changing the specification tuples within tuple centres (reiflcation
stage); and (iii) multiple workflow engines (tuple centres) can be exploited,
spread over the infrastructure nodes, so as to distribute the coordination work-
load reflecting a multi-centric view of coordination (Omicini and Ossowski,
2003).

7. Discussion
In this chapter, we provided a brief overview over current conceptualisa-

tions, models and support infrastructures for coordination in MAS. We moti-
vated that today’s enabling infrastructures need to be extended so as to allow
MAS designers to effectively govern the agent interaction space. Such coor-
dination infrastructures may then become the natural loci for modelling and
enacting mechanisms that bias autonomous agent (inter-)action and achieve
instrumental behaviour. Drawing from findings in Activity Theory, we put for-
ward the notion of artifact as a step toward a unified framework for coordina-
tion, and derived some distinctive properties that a coordination infrastructure
should feature. Finally, we provided clues on how these notions can support a
principled design process for MAS.

Although the ideas presented in this chapter tackle the problem of coordina-
tion infrastructures for MAS engineering mainly at a conceptual level, software

www.manaraa.com

frameworks that adequately support the abstractions that we have put forward
will soon be a reality. This, in turn, will facilitate a smooth integration with
modern AOSE methodologies and thus allow the full exploitation of the poten-
tial of coordination infrastructures in all stages of MAS engineering.

296 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

V

NON TRADITIONAL APPROACHES TO
AGENT-ORIENTED SOFTWARE ENGINEERING

www.manaraa.com

Introduction

Traditionally, software systems are modeled from a mechanical stance, and
engineered from a design stance. On the one hand, computer scientists are
both burdened and fascinated by the urge to define suitable formal theories of
computation, to prove properties of software systems, and to provide formal
frameworks for engineering. On the other hand, software engineers are used to
analyzing the functionality that a system should exhibit in a top-down way, and
to designing software architectures as reliable multi-component machines, ca-
pable of providing the required functionality efficiently and predictably. Such
traditional stances have been inherited also by researchers in the area of agent-
oriented software engineering, as it should have emerged rather clearly from
several chapters in the previous parts of the book. Unfortunately, such a tra-
ditional way of approaching the engineering of a complex software system
may not be necessarily the most appropriate one, especially in the case of very
large-systems (i.e., systems composed of a very high number of autonomous
components) dived in very dynamic environments.

Modeling and handling systems with a very large number of components in
a traditional top-down way can be feasible if such components are not auto-
nomous, i.e., are subject to a single flow of control, and are not influenced by
external factors. However, when the activities of these components are auto-
nomous, it is hard, if not conceptually and computationally infeasible, to track
them one by one so as to describe precisely the system’s behavior in terms
of the behavior of its components. In addition, as several software systems
are distributed and subject to decentralized control, or possibly embedded in
some dynamic environment, an accurate traditional modeling of their behav-
ior (i.e., using traditional logic-based formal models) is simply impossible, as
it is predicting and controlling their behavior by design. Software systems
of these kind (which are, by definition, multiagent systems, being composed
of autonomous and situated components) requires indeed novel modeling and
engineering approaches.

www.manaraa.com

300 Methodologies and Software Engineering for Agent Systems

From the modeling viewpoint, such systems can only be modeled and de-
scribed as a whole, in terms of macro-level observable characteristics, just as a
chemist describes a gas in terms of macro properties like pressure and temper-
ature.

From the design viewpoint, the lack of micro-level control over the compo-
nents of a software system and of the environment in which it is dived makes
it impossible to obtain a well-defined behavior of the system by top-down de-
sign. The challenge for the effective construction of large software systems is
to build them in a bottom-up way, starting from simple behaviors of its com-
ponents and taking care that the interactions between these components and
between these components and the environment lead to an overall acceptable
global behavior. A reasonable way to face such way of engineering systems
is getting inspiration from nature, by reverse engineering and reproducing in
computational terms a variety of phenomena – from ant foraging to auto cat-
alytic reactions – in which simple autonomous entities are observed to globally
self-organize their behaviors.

The four chapters in this part of the book should provide an broad overview
of several approaches that, although very different from each other, all shares
the basic underlying idea of adopting novel bottom-up approaches for engi-
neering large-scale self-organizing multiagent systems. In particular:

Chapter 15, “Engineering Amorphous Computing Systems” by Radhika
Nagpal and Marco Mamei, focuses on the problem of engineering the
collective behavior of an immense number of simple computational par-
ticles by adopting a physically-inspired approach. First, the authors an-
alyze and discuss the potentials of the approach in the context of smart
materials and self-assembly. Second, the authors discuss how the same
approach can be generalized so as to act as a general-purpose framework
to globally coordinate multiagent systems in scenarios such as mobile
networks and pervasive computing systems.

Chapter 16, “Making Self-Organizing Adaptive Multi-Agent Systems
Work” by Jean-Pierre George, Bruce Edmonds, Pierre Glize, explores in
general terms how emergent behaviors in complex computational sys-
tems can be harnessed and fruitfully exploited. In particular, the authors
discuss what emergence actually means in the context of multiagent sys-
tems, specifically analyze the so called class of adaptive multiagent sys-
tems, and discuss an approach for engineering this class of systems.

Chapter 17, “Engineering Swarming Systems” by Van Parunak and Sven
Brueckner, focuses on swarming systems, i.e., multiagent systems that
are built by getting inspiration from the behavior of ant colonies and,
more generally, from the behavior observed in several classes of social

www.manaraa.com

animals. The chapter introduces swarming systems in general terms,
explores why they function, describes the classes of problems for which
they are suited for, and outlines some initial principles of an engineering
methodology for developing swarming systems.

Chapter 18, “Online Engineering of Open Computational Systems” by
Martin Fredriksson and Rune Gustavsson, explicitly focuses on open
computational systems and argues that current agent-oriented software
engineering approaches have clear limitations when it comes to their
contribution and fulfillment of visions such as ambient intelligence and
grid computing. The methodological approach the authors define of on-
line engineering is introduced to provide models, methods, and tools
to facilitate the necessary transition from programming of abstract ma-
chines towards development of grounded physical open computational
systems.

Introduction 301

www.manaraa.com

Chapter 15

ENGINEERING AMORPHOUS
COMPUTING SYSTEMS

Radhika Nagpal and Marco Mamei

Abstract How does one engineer robust collective behavior from the local interactions
of immense numbers of unreliable parts? On the one hand, emerging technolo-
gies like MEMS are making it possible to assemble systems that incorporate
myriad of information-processing units at almost no cost: smart materials, self-
assembling structures, vast sensor networks. On the other hand, the plummeting
cost of ad-hoc wireless communication is realizing the idea of pervasive com-
puting: the creation of environments saturated with wireless computing devices
collectively providing services anytime and everywhere. We discuss organizing
principles and programming methodologies for controlling such amorphous sys-
tems, by combining robust algorithms inspired by nature with computer science
techniques for controlling complexity.

1. Introduction
Over the next few decades, emerging technologies will make it possible to

assemble systems that incorporate myriad of information-processing units at
almost no cost, provided that all the units need not work perfectly and that there
is no need to manufacture precise geometrical arrangements or precise inter-
connections among them. This technology shift requires fundamental changes
in methods for constructing and programming computers, and perhaps in our
view of computation itself.

Microelectronic mechanical components have become so inexpensive to
manufacture that we can anticipate combining logic circuits, microsensors,
actuators, and communications devices, integrated on the same tiny chip to
produce particles that could be mixed with bulk materials, such as paints, gels,
and concrete. Imagine coating bridges or buildings with smart paint that can
sense and report on traffic and wind loads and monitor structural integrity of
the bridge. A robot, built of millions of tiny programmable modules, could

www.manaraa.com

304 Methodologies and Software Engineering for Agent Systems

assemble itself into different shapes, perhaps as a cube for storage and then re-
configuring into a shelter or tool as needed. Already many such novel applica-
tions are being envisioned and built (Berlin, 1994; Butler et al., 2001; Cheung
et al., 1997; Kahn et al., 1999). Even more striking is the emerging research in
biocomputing, that may make it possible to harness the many sensors and actu-
ators in cells and program biological cells to function as drug delivery vehicles
or chemical factories for the assembly of nanoscale structures (Weiss, 2001).
Pervasive computing and sensor networks are creating massive distributed sys-
tems at a different scale, from remote habitat monitoring to smart buildings
and smart cars (Mamei et al., 2003a; Priyantha et al., 2000).

These novel computational environments pose significant challenges, be-
yond just the manufacturing of parts. Digital computers have always been
constructed to behave as precise arrangements of reliable parts, and almost all
techniques for organizing computations depend upon this precision and relia-
bility. We can envision producing and deploying vast quantities of individual
computing elements – whether microfabricated particles or engineered cells or
wireless sensors – but we have few ideas for programming them effectively.

The opportunity to exploit these new technologies poses a broad conceptual
challenge, the challenge of amorphous computing (Abelson et al., 2000):

How does one engineer robust collective behavior from the cooperation
of immense numbers of unreliable parts that are interconnected in local,
irregular, and time-varying ways?

How does one translate prespecified global goals into the local interac-
tions of vast numbers of parts?

1

2

The critical task is to identify appropriate organizing principles and pro-
gramming methodologies for controlling such systems. Hints for how to de-
sign robust collective behavior may come from natural systems, such as biol-
ogy. The growth of form in organisms demonstrates that well-defined shapes
and functional structures can develop through the interaction of cells under
the control of a genetic program, even though the precise arrangements and
numbers of the individual cells are variable. At the same time, as engineers,
we must learn to construct systems so that they end up organized to behave as
we a priori intend, not merely as they happen to evolve. Therefore a critical
piece is to develop programming methodologies, and languages, that allow us
to combine these robust organizational principles to achieve the global goals
we want.

In this article we describe work that has been done as part of the amorphous
computing effort to address these challenges. Section 2 presents the amorphous
computing model, section 3 discusses how developmental biology can provide
inspiration for robust algorithms and section 4 presents examples of how we

www.manaraa.com

Engineering Amorphous Computing Systems 305

can combine these algorithms into programming languages. In section 5 we
discuss the relationship with pervasive computing and show how similar meth-
ods have been developed elsewhere to coordinate behavior in mobile networks
of agents (Mamei et al., 2003a).

2. The Amorphous Computing Model

An amorphous computer consists of massive numbers of locally-interacting
and identically-programmed computing agents, embedded in space. We can
model this as a collection of “computational particles” sprinkled randomly on
a surface or mixed throughout a volume.

The individual agents have limited resources, limited reliability and local
information. The agents are all programmed identically, although each agent
executes its program autonomously and has means for storing local state and
generating random numbers. Each agent can communicate with a only a few
nearby neighbors. In amorphous systems of microfabricated components, the
agents might communicate via short-distance radio or through the substrate
itself; bioengineered cells might communicate by chemical means. For our
purposes here, we assume that there is a communication radius r, which is
large compared with size of individual agents and small compared with the
size of the entire area, and that two agents can communicate if they are within
distance r. The agents can also sense and affect the environment locally.

In many ways the massively parallel nature of an amorphous computer re-
sembles, and takes inspiration from, models such as cellular automata. How-
ever it presents a significantly different challenge because the mechanisms
must be independent of the detailed configuration of the agents. We assume
that access to centralized sources of information is limited, whether it be global
clocks or globally-accessible beacons for triangulating position. Rather the
goal is for the agents to self-organize global information as necessary. The
agents are not synchronized, although we assume that they compute at similar
speeds, since they are all fabricated by the same process. The agents have no a
priori knowledge of global position or orientation; however some agents may
be started in a special initial state. The agents are possibly faulty, and are can
die or be replaced at any moment. The individual agents may be mobile, but
in many of the examples here we assume that they have fixed location and are
randomly distributed on a two-dimensional plane.

3. Developmental Biology as an Inspiration

Biological systems regularly achieve coherent, reliable and complex behav-
ior from the cooperation of large numbers of identically programmed agents.
One of the most fascinating examples is embryogensis. Cells with identical
DNA, cooperate to form incredibly complex structures from a nearly homo-

www.manaraa.com

306 Methodologies and Software Engineering for Agent Systems

geneous egg, with incredible precision and reliability in the face of constantly
dying and growing parts (Wolpert, 1998). There is a plethora of examples
of regulation in different organisms, that can compensate for large variations
in cell size, cell numbers, cell division rates and development time (Day and
Lawrence, 2000). Even after development, organisms such as the starfish, re-
tain incredible abilities for self-repair and regeneration.

These examples hint at powerful underlying mechanisms that can adapt to
variation, while maintaining constraints that may be geometric, topological or
functional. Studies of developmental biology can form an important source of
inspiration – not only for mechanisms, but also for the kind of robustness that
is achievable.

Morphogen Gradients. One example of a mechanism common through-
out development is the use of gradients of morphogens to determine posi-
tional information and polarity. In the Drosophila embryo, cells at one end
of the embryo emit a morphogen (protein) that diffuses along the length of
the embryo. The concentration of this morphogen is used by other undiffer-
entiated cells to determine whether they lie in the head, thorax or abdominal
regions (Lawrence, 1992). Different morphogens are used for determining the
dorsal-ventral axis, wing and limb development, and even leg bristle polarity.
Gradients of morphogens are believed to play an important role in providing
position and polarity information in many different organisms, and even in re-
generation (Wolpert, 1998).

We can emulate the concept of a morphogen gradient using a simple agent
program. An initial “source” agent, chosen by a cue from the environment
or by generating a random value, creates a gradient by sending a message to
its local neighborhood with the morphogen name and a value of zero. The
neighboring agents forward the message to their neighbors with the value in-
cremented by one and so on, until the morphogen has propagated through the
entire population. Each agent stores and forwards only the minimum value
it has heard for a particular morphogen name, thus the morphogen value rep-
resents the shortest path from the source. The value provides an estimate of
distance from the source: a point reached in n steps will be roughly distance
nr away. The quality of this estimate depends on the density of the agents and
can be theoretically predicted for random distributions (Nagpal, 2001).

This very simple program can be used in powerful ways.

Regions and Polarity: By limiting the maximum value of a morphogen,
one can create regions of controlled size. The morphogen can also be
used to provide a sense of local orientation; an agent can compare values
in its local neighborhood to determine the direction towards or away
from the source.

1

www.manaraa.com

Engineering Amorphous Computing Systems 307

Figure 15.1. (a) Emulating morphogen gradients; gradients created by point and line sources
(b) Spacing created by lateral inhibition

Spatial Patterning: More than one agent could be the source for the
same morphogen, in which case the morphogen value reflects the short-
est distance to any of the sources. Thus, if a single agent emits a mor-
phogen then the value increases as one moves radially away from the
agent, but if a line of agents emits a morphogen then the value increases
as one moves perpendicularly away from the line. Complex spatial pat-
terning can be created by positioning the sources, without any change to
the agent program.

Selective Propagation: The agent program can be modified such that
agents selectively choose which morphogens to propagate. Thus agents
in particular state can act as barriers to specific morphogens, or as ob-
stacles around which the morphogen must travel. Similarly morphogens
can be limited to propagate only with certain spatial regions.

Active Morphogens: We can allow the source agent to constantly pro-
duce a morphogen message, and have the morphogen value stored by any
agent lose significance if not constantly reinforced. The result is that the
morphogen values adapt as agents, or sources, appear and disappear.

2

3

4

These are just a few of the ways in which the morphogen gradients can be
used. This simple agent program is the basis of many different amorphous
computing algorithms for self-organizing coordinate systems, distributed stor-
age, and ad-hoc routing. In section 5, we see that the same idea appears in
many different forms elsewhere.

Lateral Inhibition. While morphogens produce a sense of distance and
orientation, lateral inhibition is believed to produce regularly spaced patterns in

www.manaraa.com

308 Methodologies and Software Engineering for Agent Systems

many different organisms. For example, in the Drosophila, epidermal cells on
the leg can produce bristles, however not all cells grow bristles. The bristles are
regularly spaced with a minimum distance between them. (Lawrence, 1992)
describes the mechanism by which this is achieved: when a cell produces a
bristle, it also secretes a short-range morphogen that inhibits nearby cells from
growing bristles. An uninhibited cells will eventually attempt to produce a
bristle. The result is bristles appear throughout the leg surface but never too
close. Lateral inhibition is believed to play a role in creating uniform spacing in
many different settings, from the spacing of hair on human skin, to the regular
crystal like spacing of ommatidia in the Drosophila eye.

Again this mechanism can be emulated by a simple agent program. An
agent picks a random number within a range L, and counts down. If it reaches
zero without being interrupted, then it becomes a leader (grows a bristle) and
sends out an inhibition message to all its neighbors within the distance r. If an
agent hears an inhibition message, then it no longer counts down to become a
leader but instead becomes a follower. The process ends after L steps, with all
agents as leaders or followers.

The result of this very simple local rule is that leaders emerge with a spacing
of r to 2r apart, throughout the surface. If we extend the inhibition to travel
h hops distance, then the spacing between leaders increases to hr to 2hr. To
see why this is true, consider an agent that becomes a leader. It could only
have done so because no other leader was within distance r inhibiting it; and
once it becomes a leader it inhibits leaders forming within distance r. At the
same time, an agent that is not inhibited continues to count down and even-
tually becomes a leader. This guarantees that every agent is within distance
r from some leader, and with high probability no leaders are closer than r.
The spacing is not perfect because two neighboring agents may choose the
same random number and reach zero at the same time. Therefore the range L
is chosen to make the probability of such collisions low. Nagpal and Coore
have shown that the behavior of this algorithm can be analyzed theoretically,
even for asynchronous agents and unreliable agents (Nagpal and Coore, 1998).
This is a valuable algorithm in an amorphous computer, and can be used for
spontaneously electing leaders, self-configuring hierarchical routing and graph
coloring.

Robust Primitives. Morphogen gradients and lateral inhibition are well-
matched to the amorphous setting because the gross phenomena of diffusion
and spacing are insensitive to the precise arrangement of the individual agents,
so long as the distribution is reasonably dense. In addition, if individual agents
do not function, or stop broadcasting, the result will not change very much,
so long as there are sufficiently many agents. Many phenomena exist in mul-

www.manaraa.com

Engineering Amorphous Computing Systems 309

ticellular systems, from quorum sensing to programmed cell death, that can
provide inspiration for robust multiagent algorithms.

At the same time, it is extremely important to be able to analyze the behavior
of these algorithms, so that we have a solid ground to build on top of. We can
theoretically analyze the behavior of both algorithms, using techniques from
distributed graph algorithm analysis and geometric analysis. For example, the
morphogen algorithm can be thought of as computing a breath first search tree,
while the lateral inhibition algorithm is a computing a maximum independent
set of nodes (Lynch, 1996). The spatial locality of communication gives us a
relation from tree depth to distance, and maximum independent set to uniform
spacing.

A key difference however, is that rather than produce a perfect answer from
a perfect graph, as is typical in distributed algorithms, these algorithms aim to
provide a good-enough answer with high probability – good enough estimates
of distance and direction, and good enough spacing. This allows the agent
behavior to be simple, scalable, and tolerant to variation. Looking to biology
may provide insights for new approaches to fault tolerance. Traditionally, one
seeks to obtain correct results despite unreliable parts. However it seems awk-
ward to describe mechanisms such as embryonic development as producing a
“right” organism by correcting bad parts and broken communications. In the
amorphous regime, getting the right answer may be the wrong idea. Instead,
the question is how do we structure systems so we get acceptable answers, with
high probability, even in the face of unreliability.

4. Towards Programming Languages

While biology may provide a means for thinking about organizing local be-
havior robustly, computer science can provide tools for managing complexity.
One such tool is a programming language. The ability to think and describe
goals in terms of high-level abstractions, make possible a complexity that is
almost inconceivable to generate by manipulating 1s and 0s. Yet the final com-
putation does happen as bits, and the compiler translates from a language that
is natural for expressing how to do something, to a low-level execution model
that a computer can interpret (Abelson, 1996).

In the amorphous computing setting the goal is similar – we would like to
be able to translate complex global goals into local behavior, but in such a
way that the translation is not mysterious and not hand crafted for each goal
– in other words, a global-to-local compiler. In this section we describe two
programming languages, aimed at pattern formation and self-assembly. The
global shape or pattern is described as a program in terms of abstract en-
tities, which is compiled to produce the behavior of an agent, such that the
identically-programmed agents organize into the prespecified goal.

www.manaraa.com

310 Methodologies and Software Engineering for Agent Systems

Figure 15.2. A program in GPL. This procedure generates a line of specified length that at-
tempts to follow constant values of pheromones 1 and 2

Growing Point Language. Coore developed a language for pattern forma-
tion on an amorphous computer (Coore, 1999). The growing point language
(GPL) can be used to specify topological patterns consisting of lines of various
thickness, such as those specifying the interconnect of an electronic circuit.
The specification is compiled into an agent program. Initially the agents start
out with identical state except for a few agents. As a result of executing the
program, the agents “differentiate” into components of the pattern.

The language represents processes in terms of the botanical metaphor of
“growing points” and pheromones. A pheromone is the same as a morphogen
with a limited range. A growing point is a locus of activity that modifies the
states of agents as it passes through, and it can respond to the gradient of a
morphogen by moving towards lower, higher or similar values of morphogens.
A pattern is created by writing a program in terms of abstract entities: growing
points that lay down materials, materials that secrete pheromones, and tropisms
that govern the trajectory of the growing point. However, at the level of the
agent these high level concepts translate to a set of simple local rules. For ex-
ample a growing point is simply a piece of state at an agent. The agent collects
values of morphogens from its neighbors and uses those value to locally com-
pute which neighboring agent to pass the growing point to. The next agent then
repeats the same process to determine where to send the growing point next.

Figure 15.2 shows a fragment of a program written in the growing-point lan-
guage: A growing point process called make–red–line, takes one param-
eter called length. This growing point “grows” material called red–poly
in a band of size 1. This implies that each agent it moves through sets a state
bit that will identify the agent as red–poly. The growing point moves ac-
cording to a tropism that directs it away from areas of higher concentration of
red–pheromone, in such a way that the concentrations of pheromone–1
and pheromone–2 are kept constant. All agents that are red–poly secrete

www.manaraa.com

Engineering Amorphous Computing Systems 311

Figure 15.3. The amorphous surface differentiating to create the inverter pattern. All agents
execute the same program, which is compiled directly from the GPL specification of the pattern
on the left

red–pheromone; consequently, the growing point will tend to move away
from the material it has already laid down. The growing point stops when the
correct length line has been grown. This procedure is part of a larger GPL
program that generates the pattern on the right. This pattern is a caricature of
the layout of a CMOS inverter, where the different colored regions represent
structures in the different layers of standard CMOS technology: metal, polysil-
icon and diffusion. Figure 15.3 shows the agents differentiating to create the
inverter pattern. The agents that are part of the top blue rail emit pheromone 1
and the bottom rail emits pheromone 2, thus the code fragment represents the
method by which the first red line is drawn parallel to these two rails and away
from the edge. The entire program that specifies the shape is only a few para-
graphs long, and the resulting state machine for the individual agents requires
only about twenty states.

Programmable Self-Assembly. Nagpal developed a language for shape
formation on a simulated foldable sheet (Nagpal, 2002). In this case the two
dimensional surface of agents represents a sheet with a single layer of ran-
domly and densely distributed agents; a set of agents in a line can coordinate
to fold the sheet along that line. The folding is modeled abstractly by the
simulator, but is inspired by epithelial tissues where a line of epithelial cells
can deform to cause the entire sheet to fold along that line; this is believed to
be the basis of neural tube formation during embryogenesis (Wolpert, 1998).
One could imagine building a programmable reconfigurable sheet composed
of such flexible agents.

The shape is specified as folding construction on a continuous sheet, using
a language called the Origami Shape Language (OSL). The language is based
on a set of geometry axioms, described by Huzita to capture the mathematics
behind origami paper-folding (Huzita and Scimemi, 1989). A large class of flat
folded shapes and line patterns can be constructed using these axioms. OSL

www.manaraa.com

312 Methodologies and Software Engineering for Agent Systems

Figure 15.4. OSL Program for folding a cup

builds on these geometry axioms, but also adds concepts such as naming and
regions.

The interesting thing about this specification is that it is abstract – there is
no notion of morphogens, coordination or even agents. Rather the programmer
thinks in terms of a continuous sheet. The agent program is automatically
compiled from this description and is composed from a small set of primitives:
morphogens, neighborhood query, cell-to-cell contact, polarity inversion and
flexible folding.

Figure 15.4 shows a diagram for constructing a cup from a blank square
sheet of paper, and the corresponding OSL program. The basic elements of the
language are points, lines and regions. Initially, the sheet starts out with four

www.manaraa.com

Engineering Amorphous Computing Systems 313

Figure 15.5. Simulation images from folding a cup

Figure 15.6. Inverter pattern created by (a) GPL (b) OSL when run on a longer sheet

www.manaraa.com

314 Methodologies and Software Engineering for Agent Systems

corner points (c1–c4) and four edge lines (e12–e41). The axioms describe
how to generate new lines and points from an existing set of lines and points,
purely through folding and unfolding paper. For example, the first operation
constructs the diagonal d1 from the points c1 and c2 by using axiom 2; axiom
2 folds the sheet so that c1 lies on c2 and then unfolds the sheet to create a
line. The sheet can be permanently folded flat along a line, hence the structures
created by OSL are flat, but layered. Lines can be used to create regions and
regions can be used to restrict folds.

Figure 15.5 shows a programmable sheet differentiating to fold into a cup.
Initially the surface is mostly homogeneous, with only the agents on the bor-
der having special local state. When the agent program is executed by all the
agents in the sheet, the sheet is configured into the desired shape. The overall
global view of this process is very close to what the diagram of the continu-
ous sheet suggests. This is because each global operation is translated into a
local agent behavior. But instead of folding, the geometry is emulated using
the biologically-inspired primitives. For example in order to implement the
first line creation, the agents belonging to c1 and c2 create two distinct mor-
phogens. The remaining agents test if the morphogen values are equal; if so
then they lie on the new line. This is the local rule corresponding to axiom
2. Morphogens also serve as a form of barrier synchronization, so that agents
can determine when it is safe to move on to the next fold operation. Selective
propagation of morphogens is used to create regions and confine operations
within regions. Each axiom translates into a set of local rules, and the program
translates to a sequence of rules.

The Power of Programming Languages. The power of the programming
language approach is that it allows us to take advantage of traditional computer
science techniques for managing complexity, while relying on biological mod-
els for achieving robustness at the local level. The global-to-local compilation
confers many advantages: (i) we can reason about the classes of structures that
can and cannot be generated by analyzing the expressiveness of the language;
(ii) the primitives themselves can be made robust by relying on mechanisms
inspired by biological systems; (iii) the analysis of a complex system becomes
tractable because it is built in understood ways from smaller parts; and (iv)
the high level language makes it possible to easily specify complex behavior,
without worrying about the millions of parts that are involved.

For example, Coore proved that GPL can generate any prespecified planar
graph pattern, up to connection topology, on an amorphous computer. Sim-
ilarly, OSL can generate any 2D Euclidean construction pattern and all flat
folded shapes composed of simple folds. These results are based on results
from geometry, that have nothing to do with multiagents or self-organization.
At the same time we can separately analyze the robustness of primitives such

www.manaraa.com

Engineering Amorphous Computing Systems 315

as morphogens, and how error accumulates when we combine those primitives,
so that we can predict what densities and numbers of agents are required to sat-
isfactorily achieve a given high-level goal. Similarly we can analyze time and
space complexity. In both languages, the complexity of the agent program is
directly proportional to the complexity of the high-level description; by using
procedures to capture regular patterns and common folding sequences, one can
compile more efficient agent programs.

The languages themselves imply certain global properties. For example, the
GPL encodes patterns with an inherent length scale and can easily describe
fractal and space filling structures. The OSL language on the other hand de-
scribes structures in a scale-independent manner, by recursively segmenting
relative to the original sheet boundary. This results in patterns that scale auto-
matically, and even asymmetrically, without any change to the program. For
example when the GPL program for an inverter is executed on a long sheet, it
results in a chain of inverters of the same size. In OSL a longer sheet simply
stretches the inverter (Figure 15.6). The two languages encode very different
properties, that can be derived directly from the choice of high-level language,
and result in different local strategies. Insights from these languages can be
used to design new languages with similar properties.

So far the work in amorphous computing has focused on languages for pat-
tern and shape formation. However, the desire to achieve global-to-local pro-
gramming is not unique to amorphous computing. The emerging field of perva-
sive computing poses the same challenge – vast numbers of computing devices
embedded in our everyday environments, need to be programmed so that spe-
cific global services result from their coordinated activities. In the rest of this
chapter, we discuss how this programming methodology can impact pervasive
computing.

5. Pervasive Computing
Consider a scenario a few years hence in which a large city like Boston

might have several wireless base stations in every building – a number of nodes
in the order of If most of the electrical devices in the buildings and those
carried on by people are wirelessly networked too, then the total number of
nodes could be as high as If these nodes communicate peer-to-peer with
nearby devices, then one could envision the entire city as connected into a
mobile ad-hoc network approximately hops in diameter. It is clear that this
pervasive computing scenario strongly resembles the amorphous computing
model, and poses similar challenges, with the significant addition of mobility.

For example, consider the problem of programming a group of agents to
coordinate their movements through an environment. Such agents may rep-
resent humans carrying wireless PDAs, navigator-augmented cars, or autono-

www.manaraa.com

316 Methodologies and Software Engineering for Agent Systems

mous robots. As in the amorphous computing scenario, instead of program-
ming the individual agents behavior directly, we would like to express desired
motion patterns in a global way. For example, in a traffic management applica-
tion, the goal may be to engineer collective behaviors to reduce the traffic. We
would like to be able to translate the desired global behavior into the agents’
local interactions (e.g., who gives the precedence to whom) (Mamei et al.,
2003b). Because of these analogies, we started to look at ideas similar to the
ones exploited in amorphous computing to organize the behavior of pervasive
computing devices.

Coordinated Movement in Mobile Agents. In our research project at
University of Modena and Reggio Emilia, we have used an idea similar to that
of morphogen gradients, which we call fields, to drive agent motion patterns.
Agents are wirelessly connected in a mobile ad-hoc network (e.g., they are
humans carrying on Wi-Fi PDAs) and fields have been modeled by means of
distributed data structures, created by an agent, and propagated to its neigh-
bors hop-by-hop. Specifically, we have developed the TOTA (Mamei et al.,
2003a) middleware that provides agents with a high-level interface to define
and spread these distributed data structures. Each field is defined by means of
a content C and a propagation rule P identifying how the field should distribute
in the network and how its value should change during the distribution.

Moreover, to take into account the dynamism of mobile networks the spa-
tial structures resulting from field propagation are kept coherent by the TOTA
middleware despite network dynamism (see Figure 15.7). From the agents’s
viewpoint, executing and interacting are basically reduced to injecting fields,
perceiving local fields, and acting according to some application-specific pol-
icy.

Let us focus on an example, imagine security guards in a museum who move
and monitor the museum in a coordinated way; they have to preserve a speci-
fied distance, say d, from each other. The security guards can be provided with
wireless enabled palm computers, connected through an ad-hoc network and
running the TOTA middleware. Each guard’s palm (agent) can generate the
field in Figure 15.8a that propagates in the surroundings and reaches a mini-
mum value at distance d from the agent. The final shape of this field approaches
the distribution shown in Figure 15.8b. Each agent can then sense its imme-
diate neighborhood, looking for the fields generated by all the other guards.
It can combine the perceived fields, by computing the minimum value at each
point. The result can be considered a field in itself, having minimum points at
distance d from other agents. At this point, each agent can just follow down-
hill this computed virtual field. The field is automatically updated as the agent
moves. The result is a globally coordinated movement in which agents reach
and maintain an almost regular grid formation (see Figure 15.8c). Following

www.manaraa.com

Engineering Amorphous Computing Systems 317

Figure 15.7. TOTA keeps a distributed fields’ structure coherent despite dynamic network
reconfigurations: (a) A peer Px propagates a field that increases its value by one at every hop
(b) When the field source Px moves, all fields are updated to take into account the new topology

similar strategies, it is possible to realize a vast number of coordinated mo-
tion activities, e.g., have a group of agents to meet somewhere, let them move
avoiding the emergence of crowds or queues, let them cooperatively surround
a prey, etc. (Mamei et al., 2003b).

It is worth noting that the TOTA approach is adaptive, in that the fields
associated to a given motion coordination policy automatically adapt to the
environment in which they are propagated. For example, if the application is
executed in a building, as long as the rough mobile network topology resembles
environmental physical constraints (i.e., no network links through walls), the
fields’ shape and thus the coordinated motion patterns adapt to the building
topology, without any change in the application code. This property resembles
the scale-independence property of the OSL language described in section 4.

www.manaraa.com

318 Methodologies and Software Engineering for Agent Systems

Figure 15.8. (a) Field propagation rule (b) Distribution of a single field (c) Regular formation
of peers

Moreover, in TOTA – as in GPL and OSL – agents are not designed in
isolation. In the case study, for example, agents achieve the goal of maintaining
the formation not because of their own internal algorithm – actually, they do
not even know about any kind of formation – they just follow downhill the
gradient of the fields being propagated, but this allows the system, as a whole,
to enforce the formation.

Apart form these similarities, there is still a gap between this approach and
the GPL and OSL programming languages. In TOTA, in fact, we still have not
identified a general methodology to help us identify, given a specific motion
pattern to be enforced, which fields have to be defined, how they should be

www.manaraa.com

Engineering Amorphous Computing Systems 319

propagated, and how they should be followed by agents. So this must be coded
by hand for each specific application. On the contrary, the availability of a
programming language like GPL or OSL, would enable us to specify the global
motion pattern we would like to achieve and have a compiler to automatically
derive suitable fields, propagation rules and agents’ algorithm to follow fields.
We are confident that such a programming language can be found in the future,
and would possibly make the model applicable to a wider class of distributed
coordination problems, even beyond motion coordination.

Other Examples. Distributed data structures, like morphogen gradients,
driving agent activities, are emerging in many disparate scenarios. The re-
search projects Anthill (Meling et al., 2001) and SwarmLinda (Mendez and
Tolksdorf, 2003) both use algorithms based on field-like data structures spread
in the network by mobile software agents to enable file sharing in Internet-scale
peer-to-peer (P2P) applications. Instead of being propagated in a breadth-first
manner, like the morphogen gradients, the agents spread the data structure as
they randomly move across the network. As a result paths are created between
peers that share similar files, thus enabling a fast content-based navigation in
the network of peers.

Similarly, in wireless ad hoc networks, morphogen gradients and fields can
be used to design of routing mechanisms. Examples of this can be found in
Gradient Routing (Poor, 2001) and in Directed Diffusion (Intanagonwiwat et
al., 2000), where peers spread morphogen gradients across the network, so
that other packets can reach their intended destination by following downhill
the gradient associated with the destinations. Analogous techniques have been
also used in (Nagpal et al., 2003) to create a coordinate system over ad-hoc
networks. Here nodes evaluate their coordinates by triangulating the distances
– expressed by means of morphogen gradients – from elected beacons.

In robotics, the idea of fields driving robots movement is not new. One of
the most recent re-issue of this idea, the Electric Field Approach (EFA) (Jo-
hansson and Saffiotti, 2001), has been exploited in the control of a team of
Sony Aibo legged robots in the RoboCup domain. Following this approach,
each Aibo robot builds a field-based representation of the environment from
the images captured by its head mounted camera, and decides its movements
by examining the fields’ gradients of this representation. Similarly, Pheromone
Robots (Payton et al., 2002) use field like distributed data structures to drive
robot vehicles to achieve useful large-scale results in surveillance, reconnais-
sance, hazard detection, and path finding.

A modular robot is another example; it is a collection of simple autono-
mous actuators, with few degrees of freedom, connected with each other. A
distributed control algorithm is executed by all the actuators to let the robot
assume a global coherent shape or a global coherent motion pattern (i.e., gait).

www.manaraa.com

320 Methodologies and Software Engineering for Agent Systems

An interesting proposed approach adopts an idea similar morphogen gradients
to control such a robot (Shen et al., 2002). Here, morphogen gradients (called
hormones) are created and propagated through the robot. Robots’ modules de-
cide how to bend their actuators depending on the locally perceived hormone
pattern.

Shifting from physical to virtual movements, the popular videogame “The
Sims” (see http://thesims.ea.com) exploits sorts of computational fields,
called “happiness landscapes” and spread in the virtual city in which charac-
ters live, to drive the movements of non-player characters. For instance, if
a character is hungry, it perceives and follows a happiness landscape whose
peaks correspond to places where food can be found, i.e., a fridge.

The fact that similar notions, such as gradients, are found everywhere, sug-
gests that they are fundamentally suited to these types of environments. How-
ever high-level programming languages and global-to-local compilation are
rare. In the amorphous computing examples, the programming languages
made it possible to easily achieve complex and robust desired behavior. We
believe that in these other environments, the invention of appropriate global
languages could have a similar far-reaching impact.

5.1 Acknowledgements

The Amorphous Computing project was started by Abelson, Sussman, and
Knight, and the work discussed here reflects the contributions of many people
in the Group. Support for Amorphous Computing research was provided in
part by the Advanced Research Project Agency of the Department of Defense,
contract number N00014-96-1-1228, and in part by a grant from the National
Science Foundation, Division of Experimental and Integrative Activities, con-
tract number EIA-0130391. Further support was provided by the Italian MIUR
and CNR in the “Progetto Strategico IS-MANET, Infrastructures for Mobile
ad-hoc Networks.”

www.manaraa.com

Chapter 16

MAKING SELF-ORGANISING ADAPTIVE
MULTIAGENT SYSTEMS WORK

Towards the Engineering of
Emergent Multiagent Systems

Jean-Pierre Georgé, Bruce Edmonds and Pierre Glize

Abstract The context of computational entities is rapidly changing: the development of ar-
tificial systems such as the Internet, ubiquitous computing, pervasive computing
and autonomic computing mean that these entities have to cope with emergent
phenomena arising in their environment. Rather than attempt to eliminate such
emergence, we start to explore how this might be deliberately harnessed. That is,
address how we might seek to engineer MAS with desirable emergent properties.
To do this we discuss what emergence might mean in the context of MAS, and
consider a class of such systems: Adaptive MAS (AMAS) that might be used to
bring about such emergence. After reviewing the theoretical adequacy of AMAS
systems we go on to sketch an approach to making them: namely by focusing
the design effort on equipping each agent with responses to the non-cooperative
situations it may encounter. This approach is illustrated in a simple but effective
flood forecasting system called STAFF. Finally we discuss the expected benefits
and difficulties inherent in this approach and the likely way forward.

1. Introduction
The traditional design approach in software engineering requires the de-

signer to have some important initial knowledge: first, the exact purpose of
the system, and second, the range of possible situations (e.g., interactions)
to which the system may be confronted with in the future. This point of
view, which leaves little room for the system’s autonomous operation, has been
guided by two converging considerations from the beginning of computer sci-
ence. They are:

To guarantee in the most formal way possible that the system effectively
computes the “right” function (or achieves the stated goal); and

www.manaraa.com

322 Methodologies and Software Engineering for Agent Systems

To optimise memory capacities, computing speed and the very limited
perceptive capacities associated to the first computers.

Such an approach imposes an ever-growing design task on the developer re-
sulting from the increase in complexity of the problems being tackled (enabled
by the constant increase of computer power and their inter-connectedness).
This increasing burden has motivated the invention of many software devel-
opment techniques, which nevertheless do not solve the underlying problem.
That is they only manage to slow down – without stopping – the increase of
human effort necessary to deal with ever more complex systems and situations.

This chapter explores an alternative approach which may help deal with this
burden. Basically this approach aims to build-in the ability of the agents to
learn so that the whole system of agents can adjust itself to what is required
based on the feedback it is given. This is in contrast to trying to infer the right
behaviour to meet a defined goal. The difference lies in the knowledge that
the agents have – their own supply of learnt knowledge can (in a system with
adequate feedback and interaction) substitute somewhat for the prior knowl-
edge that the designer would otherwise need to have known. The idea is thus
simple – the question remains of how to “structure” the agent system so that
this adaptation occurs and is sufficiently effective so that the whole system is
useful.

The evolution of computer science forces us to consider that it is more and
more difficult – if not impossible –to control accurately the activity of increas-
ing complex software systems or even describe completely how they work.
As (Horn, 2001) says:

“Even if we could somehow come up with enough skilled people, the com-
plexity is growing beyond human ability to manage it. As computing evolves,
the overlapping connections, dependencies, and interacting applications call
for administrative decision-making and responses faster than any human can
deliver. Pinpointing root causes of failures becomes more difficult, while find-
ing ways of increasing system efficiency generates problems with more vari-
ables than any human can hope to solve. Without new approaches, things will
only get worse. ”

This problem is one that can only get worse. One factor that will ensure this
is the development of ubiquitous computing (see chapter 19).

“The Ubiquitous Computing era will have lots of computers sharing each of
us. Some of these computers will be the hundreds we may access in the course
of a few minutes of Internet browsing. Others will be imbedded in walls, chairs,
clothing, light switches, cars – in everything. Ubiquitous Computing is funda-
mentally characterized by the connection of things in the world with computa-
tion. This will take place at a many scales, including the microscopic” (Weiser,
1996).

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 323

The growth of ubiquitous computing mirrors that of the Internet – inter-
action with this is increasingly common in many applications. For this reason
you cannot think of having a global control over this kind of application. More-
over, the power of each computer enables us to perform more complex com-
putations – each system can be composed of many interacting entities that are
autonomous, heterogeneous and evolutionary (Parunak and Vanderbok, 1997).
Finally, the many possibilities for connecting different hardware systems im-
ply that we have to take into account open and heterogeneous environments
that are increasingly dynamic.

One way to counter these difficulties is to give more autonomy to the soft-
ware so as to enable it to adapt itself, as well as it can, to unexpected events.
In this case we make the agents more autonomous by allowing them to learn
knowledge that the designer does not have. Making machines more autono-
mous means that the designer can defer some of the design decisions to the
software itself. This means that the agents may be able to make better deci-
sions since they have up-to-date information. However this deferring of deci-
sion making is not easy to do in a truly distributed way and it is easy to fall into
the trap of having assumed something about the context of operation that turns
out not to be the case and so not endow the system with an ability to cope with
it.

Formal theories can help us to represent and reason about time, space and
dynamics of an evolving world. However such an approach is very difficult to
make work in many situations, including when:

The system’s environment is very dynamic, making it ineffective to enu-
merate exhaustively all the situations the system may encounter (or en-
code it in a suitable decision mechanism), e.g., a real-world robot.

The system is open, in effect constituted of a shifting number of compo-
nents (e.g., an e-marketplace).

The task the system has to achieve is so complex that it is difficult to
formulate adequate goals and it is infeasible to check that a design is
adequate (e.g., Ubiquitous Computing where the goal is to satisfy the
users; but what is “user satisfaction” for a UC system? For a discussion
about UC see chapter 19).

The way a system achieves the task it has been assigned is difficult or
even impossible to apprehend in its totality by the designer (e.g., flood or
weather forecast: how does the system link all the different parameters
during time to give an adequate forecast? See section 4).

If we are to be able to produce artificial systems with the ability to confront
really unexpected situations (like the ones resulting from a lack of spatial or

www.manaraa.com

324 Methodologies and Software Engineering for Agent Systems

temporal knowledge) then we need to develop a research agenda that leads to
a different paradigm of design than the traditional global top-down approach
based upon an adequate modelling of the world (Edmonds, 1998).

The more autonomy a system has, the less easy it is for a designer to control
it or even predict what it will do. This is both the advantage and the disad-
vantage of using autonomous agents for practical tasks. When the task is to
be undertaken by a group of interacting autonomous agents (whose autonomy
includes adaptation) both the advantages and the disadvantages are greatly am-
plified. Baldly put – it is very difficult to get a bunch of truly autonomous
entities to do what you want them to do. It is doubly difficult to get them to
cooperate to achieve any collective goal you may have, since the complex and
dynamic interactions that could occur are beyond our ability to analyse and
predict, in general.

Fortunately we have a rich source of ideas and examples from which to draw
– human society. It is the analogy with human (and other animal) actors that
makes the agent paradigm useful – otherwise it would be simply a bunch of
arbitrary interacting modules with no guide with which to direct their design.

One such approach to controlling such systems of agents is to impose a tight
managerial control upon them – effectively reducing their autonomy in order
to achieve desired collective results. This can be dubbed the “managerial” ap-
proach. It is the approach taken by human managers in firms for whom control
is important. An example of this is (Wooldridge and Jennings, 1998) who
lists some of the pitfalls of agent development each of which essentially con-
strain the autonomy of the composite agents in order that a traditional design
approach can operate.

However, if one abandons the pure design stance, there are other possibil-
ities. In the human case there are many circumstances where control is less
important than the success of the group – in fact, there are some circumstances
where more control means less success. For example, the attempt to control
all aspects of production in the Soviet Union with 5-year plans was not as suc-
cesful as the relatively “anarchic” market economies of the West1. Similarly
in search techniques, the unpredictability of the search landscapes means that
“greedy” techniques, where search is directed, can often result in worse results
than search which involves more randomness. Basically these other possibili-
ties all impose some structure and endow each agent with some communication
ability and motivations, thus allowing each agent with more autonomy than in
the managerial approach. For example, such agents could join or leave groups
dynamically, could entrepreneurially develop novel services for other agents
or be an information broker.

1Considering only this aspect without regard to other parameters (cultural, social, ecological, etc.)

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 325

Thus systems of adaptively autonomous agents look like they are a fruit-
ful approach to the understanding and production of useful complex emergent
systems. They have the flexibility to implement any desired systems but yet
there are some guiding ideas and analogies to guide us in controlling and un-
derstanding them. Their adaptivity holds out the hope that we will be able to
defer some of the decision making to the system at the decision time.

2. Characterization of Emergence in Synthetic Systems

Research on self-organization (see chapter 17) tries to describe and explain
forms, complex patterns and behaviours that arise without an outside organizer.
See a special issue of the Royal Society (Royal Society of London, 2003) for
an analysis of phenomena observed in physical systems, in nature and in social
contexts. One common characteristic of the mechanisms that trigger and cre-
ate self-organisation is the use of simple rules for the emergence of complex
processes.

To be able to use the notion of emergence in artificial systems, some strict
rules must be followed. Indeed we must be careful not to introduce, inad-
vertently, some form of control which would prevent the appearance of emer-
gence. In order to do that we present briefly in this paragraph what is the
common agreement about the meaning of emergence in natural systems and
what are the deduced rules for artificial ones.

2.1 The Meaning of “Emergence” in Natural Systems
So what allows us to judge of the emergent character of a phenomenon?

Instead of pretending to give an exact and exhaustive definition of emergence,
we will rather, using definitions extracted from literature, list those properties
that seem fundamental to us in order to be able to comprehend in a precise
way the notion of emergence. The common inter-related proprieties that let us
identify a phenomenon as emergent are:

The observation of an ostensive phenomenon (it imposes itself to the ob-
server) at the global or macroscopic level. Emergence is defined in terms
of the irreducibility of properties associated with a higher level theory
to properties associated with components in a lower level theory (Kim,
1997).

The radical novelty of the phenomenon (it is not visible at the micro-
scopic level and it is impossible to predict it). “On one hand, emergence
presupposes appearance of novelty – property, structure, form or func-
tion –, and on the other hand, it implies that it is impossible to describe,
explain or predict these new phenomena in physical terms from the basic
conditions defined on the lower levels” (van de Vijver, 1997).

1

2

www.manaraa.com

326 Methodologies and Software Engineering for Agent Systems

3 The coherence and correlation of the phenomenon (it has an own identity
but it is strongly linked to the parts that produce it). “Emergence refers
to the arising of novel and coherent structures, patterns, and properties
during the process of self-organisation in complex systems” (Goldstein,
1999).

Taken together and applied to software these mean that the emergent phe-
nomenon is some pattern in the outcomes that is meaningfully identified as
a relevant phenomenon in its own right, that is, it is a novel, coherent phe-
nomenon that imposes itself on us at the global level. Further that, although
it is caused by the detail of the software operation (and its environment), this
phenomenon is neither completely predictable from the code nor analysable
down to the design of the code and its environment (at least in practice). One
consequence of this is that any particular emergent effect can not be designed
into any set of code as the result of any prior theory (otherwise it would be
predictable and analysable to that code). This does not stop considerable ele-
ments of design entering in to the making of a system with desirable emergent
properties – for example, it may be possible to determine some necessary con-
ditions for the desired phenomenon, but not conditions that are also sufficient.
However it does mean that prior design processes are not sufficient on their
own, there needs to be some processes of a posteori adjustment or evolution as
the result of feedback concerning the phenomenon (Bryson, 2001).

2.2 Computational Approach for Emergence
During the last fifteen years, a whole research field slowly appeared around

the concept of emergence so as to exploit its so particular characteristics in
computational systems (Holland, 1997). “Emergent Computation” (Forrest,
1991; Gilber, 1995) is the term used in general to refer to the research main
line on which our work stands.

Our work in this domain during the last decade leads us to give a “technical”
definition of emergence in the context of MAS, and therefore with a strong
computer science coloration. It is based on three points:

The subject. The goal of a computational system is to realise an ade-
quate function, judged by a relevant user. It is this function (which may
evolve during time) that has to emerge.

The condition. This function is emergent if the coding of the system
does not depend on the knowledge of this function. This coding has to
contain the mechanisms facilitating the adaptation of the system during
its coupling with the environment, so as to tend towards an adequate
function.

1

2

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 327

3 The method. To change the function the system only has to change
the organisation of its components. The mechanisms which allow the
changes are specified by self-organisation rules providing autonomous
guidance to the components’ behaviour without any knowledge of the
collective function.

So when we design an agent for a MAS, the code of the agent does not
contain any knowledge of the collective function we want the MAS to compute.
This function has to emerge as a result of adaptation by agents as a result of
their interactions in the system and the feedback to the system.

3. An Example of a MAS Technology using Emergence
The AMAS (Adaptive Multi-Agent Systems) approach is described here to

show what could be a method for producing MAS with desirable emergent
properties. In this approach the adequate collective behaviour is based on the
cooperative action of the agents (Capera et al., 2003a).

The first subsection explains the central role of the system’s organisation for
its global function. The second one summarises the theoretical adequacy of the
approach, namely a justification of the interdependence that can exist between
a cooperative local behaviour and the adequacy of the collective global func-
tion. The third shows how this theory can be applied to adaptive MAS. We
explain the basic behaviour of an agent facing locally uncooperative situation
and the consequence at the organisation level.

3.1 Adapt the System by Its Parts
By specifying a priori a model for a system that will have to deal with unex-

pected events, you constrain (maybe inopportunely) the space of possibilities.
Since (von Bertalanffy, 1968), many authors have studied systems of different
order that cannot be apprehended by studying their parts taken separately: “We
may state as characteristic of modern science that this scheme of isolable units
acting in one-way causality has proven to be insufficient. Hence the appear-
ance, in all fields of science, of notions like wholeness, holistic, organismic,
gestalt, etc., which all signify that, in the last resort, we must think in terms of
systems of elements in mutual interaction.”

Following this view, we consider that each part of a MAS achieves a partial
function. These partial functions will be combined in some way to construct
the global function (which is the output of the system). The combination of
partial functions is determined by the current organisation of the parts and, in
general, the order and manner in which they are combined will matter. Thus
by transforming the organisation of the MAS, you change the combination of
the partial functions and so you modify the global function. Therefore, this is a
mechanism that can be exploited to adapt the system to its environment. A per-

www.manaraa.com

328 Methodologies and Software Engineering for Agent Systems

tinent framework within which to build this kind of system is that of the adap-
tive MAS. As usually meant (Wooldridge, 2002) by “multiagent systems,” we
will be referring to systems constituted by several autonomous agents, plunged
in a common environment and trying to solve a common task.

3.2 The AMAS Theory

Cooperation was extensively studied in computer science by Axelrod (Ax-
elrod, 1984) and Huberman (Huberman, 1991) for instance. “Everybody will
agree that co-operation is in general advantageous for the group of co-operators
as a whole, even though it may curb some individual’s freedom.” (Heylighen,
1992). Relevant bio-inspired approaches using cooperation are the Ants Al-
gorithms (Dorigo and Di Caro, 1999) which give efficient results in many do-
mains. In order to show the theoretical improvement coming from cooperation,
we have produced the following theorem which describes the relation between
cooperation in a system and the resulting functional adequacy of the system.

We demonstrate the functional adequacy of a particular class of systems
(the class of cooperative internal medium systems) by the fact that the systems
of this class are adequate to carry out the task for what they were conceived.

Note, “functional” refers to the “function” the system is producing, in a
broad meaning. I.e., what the system is doing, what an observer would qualify
as the behaviour of a system. And “adequate” simply means that the sys-
tem is doing the “right” thing, judged by an observer or the environment. So
“functional adequacy” can be seen as “having the appropriate behaviour for
the task.”

Theorem For any functionally adequate system, there is at least a cooper-
ative internal medium system that fulfills an equivalent function in the same
environment.

Note, a cooperative internal medium system is a system where no Non-
Cooperative Situations (NCS) exist (see section 3.3 for a definition of NCS).

This theorem means that we only have to use (and hence understand) a sub-
set of particular systems (those with cooperative internal mediums) in order
to obtain a functionally adequate system in a given environment. We concen-
trate on a particular class of such systems, those with the following proper-
ties (Gleizes et al., 1999):

It is a cooperative system which is functionally adequate with respect
to its environment. Its parts do not “know” the global function it has to
realise via adaptation.

It does not have an explicitly defined goal, rather it acts using its per-
ceptions of the environment as feedback so as to adapt the global func-
tion to be adequate. The mechanism of adaptation is for each agent try

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 329

and maintain cooperation using its skills, representations of itself, other
agents and environment.

Each part only evaluates whether the changes taking place are coop-
erative from its point of view - it does not know if these changes are
dependent on its own past actions.

The demonstration of the functional adequacy theorem in (Camps et al.,
1998) results from the application of the following axiom and the four lemmas.
For each of them we have added a short textual explanation.

Axiom A functionally adequate system has no antinomic activity on its envi-
ronment.

Note, antinomic activity means that an activity works against the interests
of another.

The veracity of this assertion could be proved if we were an external ob-
server of all the systems and their environments in order to avoid any pertur-
bation. This cannot exist in our physical world, so this is why it is defined as
an axiom.

Lemma 1 A cooperative system is functionally adequate.

By definition, a cooperative system has only beneficial activities for its en-
vironment. So, there is no antinomic activity for the system and the previous
axiom can be used.

Lemma 2 For any functionally adequate system S there exists at least a coop-
erative system S* which is also functionally adequate in the same environment.

The demonstration uses a thinking experiment in order to construct the sys-
tem S* from the initial system S. It has four steps: specifying an algorithm
to construct a cooperative system, showing the termination of the algorithm,
proving that the new system realizes a function equivalent from the system S,
and concluding that this is a right functionally adequate system S*.

Lemma 3 Any system having an internal cooperative medium is functionally
adequate.

An internal medium of a system contains all its parts and physical supports
needed for their exchanges. A system with cooperative internal medium has
only cooperative exchanges with its environment because these exchanges are
a subset of its parts interactions.

Lemma 4 For any cooperative system, there exists at least a cooperative inter-
nal medium system that is also functionally adequate in the same environment.

www.manaraa.com

330 Methodologies and Software Engineering for Agent Systems

The method is identical to the lemma 2. The reasoning process involves all
the system parts. The cardinality of the parts is assumed finite for any real
system.

The theorem is easily obtained by operations of surjection and inclusion of
the systems sets defined in the lemmas (functionally adequate, cooperative,
cooperative internal medium).

3.3 The AMAS Technology
Our objective is to produce systems that perform well when they encounter

unexpected difficulties. These difficulties are analogous to the “exceptions” in
traditional programs. From an agent point of view, we call them Non Coop-
erative Situations (NCS). The designer has to describe not only what an agent
has to do in order to achieve its goal but also which locally-detected situations
must be avoided and, if they are detected, what to do about them (in the same
manner that exceptions are treated in classical programs). More precisely three
kinds of non cooperative situations should be detected by the agent:

When an incoming signal is not understood or it is ambiguous;

When new information does not cause any change or activity in an agent;
and

When the conclusions are not useful to others (i.e., they signal back their
dissatisfaction or at variance with their expectations).

A cooperative agent in the AMAS framework has the four following charac-
teristics. First, an agent is autonomous; that is an agent has the ability to decide
to say “no” to an activity or start a new activity. Second, each agent is unaware
of the global function of the system; that is the global function emerges (from
the agent level towards the multiagent level). Third, an agent can detect non-
cooperative situations and acts to return to a cooperative state. And finally, a
cooperative agent is not altruistic in the sense that an altruistic agent is forced
to help other agents. It is benevolent, i.e., it seeks to achieve its own goal while
being cooperative, but not altruistic in the sense that it puts the goals of others
above its own.

Generally, five features are necessary in order for a coherent collective be-
haviour to emerge from the interaction of the individual behaviours.

Each agent has the skills necessary to be able to perform the partial func-
tion which is assigned to him.

Each agent needs some knowledge of itself, the agents it interacts with
and its local environment.

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 331

Each agent is endowed with a social attitude which enables it to modify
its interactions with other agents. This is based on what we call the
cooperation: if an agent detects a non-cooperative situation, it acts to try
and restore cooperation.

An interaction language or protocol is necessary for the agents to com-
municate (whether the communication is direct or otherwise).

Each agent has some “aptitudes” which are capacities to reason on its
representations and its knowledge.

In this kind of adaptive MAS the designer has to give the agent the means
to autonomously change its links with the other agents. We start from the idea
that, to get good global behaviour the elements that constitute the system have
to be “at the right place, at the right time” in the organisation. To achieve
this, each agent is programmed to be in a cooperative situation with the other
agents of the system. Only in this case, an agent always receives relevant infor-
mation for it to compute its function, and it always transmits relevant informa-
tion to others. The designer provides the agents with local criteria to discern
between cooperative and non-cooperative situations. The detection and then
elimination of non-cooperative situations between agents constitute the engine
of self-organisation.

Thus the hope is that, depending on the real-time interactions the MAS has
with its environment, the organisation between its agents emerges and consti-
tutes an answer to the aforementioned difficulties (indeed, there is no global
control of the system). In itself, the emergent organisation is an observable
organisation that has not been completely specified by the designer of the sys-
tem. Each agent computes a partial function, but the combination of all the
partial functions produces the global emergent function. Depending on the in-
teractions between themselves and the environment, the agents change their
interactions, i.e., their links. This is the self-organisation in an AMAS system.

By design, the emerging purpose of a system is not recognizable by any part
of the system. Rather all adaptation towards obtaining the desirable feedback
is achieved in strictly local manner (relative to the activity of the parts which
make it up).

4. Flood Forecast by Cooperative Self-Organizing Agents
In this part we exhibit a concrete application, called STAFF, demonstrating

how improvements in the cooperation at a micro level (the system components)
can imply a macro level improvement. The first subsection describes the over-
all architecture of the MAS. The second shows some typical result obtained
with the system. The third presents the self-organisations rules between the

www.manaraa.com

332 Methodologies and Software Engineering for Agent Systems

agents. And the last highlights the utility of cooperation by showing the results
obtained when some cooperative rules are missing.

Part of the difficulty in forecasting floods results from the incapacity to ex-
actly forecast the quantity and the location of rains. As long as the forecast-
ing of rains is approximate, this environment will be effectively unpredictable.
Thus, the design of STAFF uses a totally different approach from the existing
models of forecasting (which rely on approximate physico-hydrological mod-
els). The aim of STAFF is to be able to compute a flood forecast at any point
in the basin without any prior information (either physical or hydrological).
It only utilizes the data gauges in the basin and the real current river level at
the point for which STAFF must provide a flood forecast. It must give such
forecasts in real time.

To achieve this the principles of autonomy, cooperation and self-organisa-
tion have been applied within the AMAS framework. We show here how the
theory has been applied, setting out in detail the architecture and the working
principles of the adaptive MAS. Since 2001, STAFF has been operational on
the Sophie software platform (Georgé et al., 2003), and used by the experts
from DIREN (Direction Régionale de 1’Environnement) which are responsi-
ble of flood management in the region of France Midi-Pyrenees. The results
presented here are obtained from real graphical results on this platform.

4.1 The STAFF Architecture

The upper level of STAFF is a MAS which computes a forecast for the water
level as long as it is running. Each agent in this level (called “hourly agents”)
in effect, tries to give the change in water level which will occur during the
next hour (for example between t+3 and t+4). Each hourly agent is a MAS
itself, composed of agents on the second level. An agent in this second level is
associated with a sensor it can be interpreted as trying to find the real influence
of this measurement during that time period for the hourly agent.

In order to indicate the self-organisation steps, we will use the following
notation:

is the raw value provided by the sensor agent associated with the sen-
sor i (which should correspond indifferently to a rain gauge or a river
gauge without any additional information on its location).

is the weight which will be applied to the entry value i. This is an in-
teger varying between 0 and 2000. A value less than zero means that this
sensor is currently irrelevant to explain the output (the hourly forecast).

is the minimal value of the increment applied to the weight This
value is 1 in the current system.

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 333

The “forecast” provided by the hourly agent is (from time t+k-1 to
time t+k) calculated as the weighted sum of all the entries greater than
zero. This is the change of the river level.

The global forecast is the result given by the MAS station. It is the sum
of the (for a forecast for time t four hours in the future, it is the sum
of the changes during the four hours preceding t).

The feedback to each station is the actual change in the river level be-
tween time t-1 and t.

4.2 Flood Forecast Results

In Figure 16.1, the X-axis represents time over 4 days of measures (96
hours). The Y-axis is the evolution of a river level (in meters). The dark-
blue curve (thick line) is the real evolution of the river, whereas the red curve
(thin line) is the forecast of the river given by STAFF. From evidence, we can
say that the STAFF predictive model is very close to the real evolution of the
river.

Classical physic-hydrological forecast models consist in generic formula,
the parameters of which are determined from measures on ground and from
historical data about floods in the relevant basin. Some of these are linear
models that compute the forecast at for a station according to the flow
growing between t and at the same station; others follow the principle of
the “rain-flow” model, which is a function of a flood coefficient and the action
delay of rain. Non-linear models are also used to simulate the attenuation of
the flood wave between upstream and downstream stations. The building and
adjustment of these formulas is time expensive (several months) and do not
give good results for every point in the basin (particularly upstream stations
and new stations) and for every kind of flood (particularly those that are slow
or which have a constant evolution phase) or when the sensors break down.

Compared to these classical models, the STAFF system has many interesting
properties that have been observed during its functioning:

Generally speaking, on the dozen locations where classical models exist
in Midi-Pyrenées, the STAFF software gives results that are at least as
good the previous ones and often better.

STAFF correctly predicts the initial period of the flood even when some
of the input data is missing, by automatically compensating them with
other entries which are not so relevant.

STAFF provides forecasts for river level change in real time that are
useful for expert decision making, even where the input data are very
noisy.

1

2

3

www.manaraa.com

334 Methodologies and Software Engineering for Agent Systems

Figure 16.1. Typical functioning of STAFF

4 The system is able to provide flood forecasts for an upstream station
by creating a model based on the rains moving from one basin slope to
another, rather than a usual flow propagation (which is inaccurate in this
case). Simply put, the system makes a forecast for one valley based upon
the rainfalls in an adjacent valley because it “learned” that the clouds will
probably move from that valley to the first.

These results firmly establish the effectiveness of the STAFF software and
we can say that it is “functionally adequate” according to the terminology of
the AMAS framework. In fact, the framework claims that when components
of a system are in cooperative situation, the system has a suitable behaviour
in the environment. As we will see, it is only by reducing conflicts between
forecast agents that STAFF reduces highly the forecast error.

4.3 Self-Organisation in the MAS

To approximate the measure curve by a linear function the specific influence
of each item of sensor information has to be determined. Due to the highly
dynamic nature of a flood, this influence is unknown at the design phase of the
system. This is the reason we encapsulate each sensor with an agent that is
in charge of determining this influence as a weight. Each entry (typically one
thousand of them) comes from sensors in the Garonne hydrological basin. At
a station, all the sensors intervene as a pondered sum of their weights in order
to compute the change in water level over one hour. Thanks to this systematic

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 335

adjustment, the modelling is adaptive and the relation non-linear over time in
spite of using a simple balanced sum, since the weights will change over that
time.

The aim of a sensor agent is to adjust the extent to which the measure it is
associated with affects the hourly forecast. The typical non-cooperative situa-
tion for a sensor agent consists in a bad evaluation of its influence. This case
appears every time the hourly agent it is working for has to readjust its forecast.
Non-cooperative situations depend on the notions of correlation and influence.
Correlation indicates whether a measure has to be used to compute the fore-
cast and if so the level of influence. There are three types of non-cooperative
situations a sensor agent may face:

The entry value of an agent is not correlated with the feedback (the sta-
tion evolution). This is a non-cooperative situation of uselessness be-
cause the agent cannot, at this moment, explain the output. In this case
the weight must be diminished:

The entry value of an agent is correlated with the feedback, but is
currently negative (this entry was in the past mainly uncorrelated). This
agent could be useful and the weight value must be increased:

The entry is correlated but the forecast given previously (i.e., the forecast
for the current time t, for which we know now the feedback value) is
erroneous. The wrong influence of the agent must be modified in order
to decrease the forecast error. Because at the same time many agents can
act in the same way we are in the concurrency situation and each agent
has to do some small adjustment to act but by taking into account the
actions of the other agents:

In order to take into account the very latest sensor information, the forecast
delay for a hourly agent has to be the shortest possible. The inferior limit for
the forecast delay is equal to the range period of the sensors which is one hour
for the Garonne basin.

Thus we have built a MAS made of several forecasting agents (the hourly
agents), each having a forecast range of one hour. The number of these agents
in the MAS at the station depends on the number of hours in the forecast delay.
Each such agent computes its forecast for its own period of one hour. The sum
of the hourly agents gives the final forecast associated with the station.

The presence of several hourly agents in the same system may lead to con-
flict situations between their respective results. STAFF is programmed to take

1

2

3

www.manaraa.com

336 Methodologies and Software Engineering for Agent Systems

Figure 16.2. STAFF results without cooperation between the hourly agents

into consideration only the most critical of them leading to the following treat-
ment:

The first forecasting agent compares its previous forecast with the
last station measure (Feedback). A difference is a conflict between the
forecast value and the real value, which implies an adjustment inside the
corresponding hourly agents.

(giving the change forecast between 1 and 2 hours in the future) com-
pares its previous forecast (the one it gave 1 hour in the past) with the
new forecast of (so for the same time in fact). The difference is inter-
preted as a conflict that implies an adjustment inside the corresponding
hourly MAS. This is repeated with the other forecast agents.

1

2

4.4 Results without Cooperation

In the following experiments indicated in Figure 16.2 we have suppressed
the adjustment corresponding to the second point indicated in the previous
paragraph. The results are given for exactly the same basin location and the
same time as the results given in Figure 16.1 (the thick curves are identical).

The STAFF forecasts without this mechanism for enforcing coherence are
worse than those with cooperation. One might think that this specific coop-
eration removal would not be very influential because it only corresponds to
an adaptation process based on the difference of results given by the different

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 337

forecasting agents and not on what is usually called “feedback” in learning
methods. However this is not the case. Indeed, despite the fact that all these
results are individually erroneous, the process of trying to diminish their dif-
ferences results in an improved collective result.

If we refer again to the Functional Adequacy Theorem, we see that is says
that there exists a system having a cooperative internal medium which gives the
right result to the environment. Here, STAFF’S environment is the user who
wants a good forecast, and when this not the case STAFF receives a feedback
giving the real observed variation level of the water at the current time. This
starts an adjustment process for the hourly agent (from time t to time t+1).
Strictly speaking, this is the only learning that can be done given the feedback;
the predictions of the other agents took place too long ago for them to take into
account the current feedback. But the cooperative agent must also inform
neighbours of its new potentially useful result. Particularly, the agent has
done a forecast for the same moment but during the previous hour (t-1). If these
two forecasts are different there is a conflict between and which must
be solved in order to obtain a more cooperative internal medium for STAFF,
according to the theorem. In fact, this cooperative mechanism is a way for all
the agents to take into account the changes affecting the other agents because
they think that these changes have some reason to exist (which is the case for

since it received a feedback from the environment).
But the theorem gives no information about the parts (the agents) which are

the constituents for the cooperative internal medium in a given application. So
we have spent a lot of time during the development of STAFF to identify the

agents and we still are not sure that is the only relevant (or best) identifica-
tion. The ADELFE methodology (see section 5.2 and chapter 8) gives some
indications of how to do that, but this can be more or less difficult in a given ap-
plication. This identification is an important and difficult part of the work but
should always be possible because the theorem asserts that there exists at least
one of this particular internal medium where all the parts are in cooperative
interactions.

5. Software Engineering Requirements for
Self-Organizing MAS

5.1 A Framework for Software Engineering

Software engineering concerns the establishment and use of sound princi-
ples (methods) in order to economically obtain software that is reliable and
works on real machines (Bauer, 1972). Could we apply a software engineering
method if the software function results from an emergence? The response will
be positive if we can use emergence to guarantee a functional adequacy (i.e.,

www.manaraa.com

338 Methodologies and Software Engineering for Agent Systems

reliable system). For this reason we must develop a systematic and disciplined
approach that can deliver quantifiable benefits.

We are far from being able to definitely give such a positive answer. How-
ever it does appear that the approach of utilising agent adaptation using feed-
back (that is ultimately derived from the appropriateness of the global be-
haviour) and by concentrating on programming for adaptation of agent sub-
components when it encounters unsatisfactory interaction in the system could
allow for some optimism in this regard. The example in this chapter shows
that something like it can be an effective way forward in, at least some, cir-
cumstances. The flexibility and homeostatic abilities of such systems does
mean that they are a promising avenue to investigate.

Theory will play a part in this development. Some of the theory which
demonstrates the theoretical adequacy of this approach was summarised above
and, no doubt, more theory can be and will need to be developed. However
the complexity of these kinds of systems and the nature of emergence will
mean that prior theory will probably never be sufficient on its own (Edmonds,
2003b). Instead the development of relevant theory will have to be achieved
more by methods akin to the natural sciences that those derived from the formal
sciences. In other words, many of the theories and properties will have to be
discovered and confirmed experimentally. However, as in the natural sciences,
this does not mean that the theories will not be formal, just that they will be
contingent theories whose reliability is established inductively and where it is
unlikely there will be any final proof.

Thus it is likely that (as in biology) there will be many kinds of emergent
system, each of which will need to be investigated and understood differ-
ently (Edmonds, 2003a). There is unlikely to be any substantial amount of
generally applicable theory. Rather there may be a range of useful approaches
and frameworks (like the AMAS framework described herein). What one can
imagine is that, like architecture, there will be a range of well-understood and
validated techniques that can be flexibly combined to construct workable sys-
tems, just as arches, beams, suspension etc. for part of a vocabulary of forms
in constructing buildings.

5.2 The ADELFE Methodology for AMAS Systems

For a theory to be used to build artificial systems, even systems based on
emergence, we need methodologies to concretely guide the engineers. In the
particular case of the AMAS theory, a specific methodology called ADELFE
(see chapter 8) is being developed and is the focus of chapter 8. ADELFE
guides mainly the engineer by:

www.manaraa.com

Making Self-Organising Adaptive Multiagent Systems Work 339

Identifying the agents in the system even when there is more than one
level of agents (an agent can be itself constituted by agents, thus enabling
its adaptation); and

Defining what are the Non Cooperative Situations an agent may en-
counter and the corrective actions he has to take.

5.3 Expected Benefits and Difficulties

In general, no mechanism for adaptation or learning which imposes the
knowledge of a cost function is better than any other, whether the algorithm
is distributed or centrally controlled. As the “No Free Lunch Theorem For
Search” puts it “In our investigation of the search problem … the first ques-
tion we addressed was whether it may be that some algorithm A performs better
than B, on average. Our answer to this question, given by the NFL theorem
is that this is impossible” (Wolpert and MacReady 1995). The moral of this is
that any algorithm of this kind needs to exploit some context-specific knowl-
edge of the domain of application in order to gain any efficiency. In other
words there is always a trade-off between the generality of an approach and its
efficiency.

In the case of AMAS, as described here, the direct benefit is probably a
greater generality of adequate performance as compared to non-adaptive MAS.
That is, there is reason to suppose that AMAS systems will respond tolerably
well to a greater range of conditions that non-adaptive versions. In the case
above the STAFF system produced adequate forecasts in a highly dynamic sit-
uation. Outside this scope they will fail as much as non-adaptive MAS (and
maybe even more catastrophically). Also it is likely that they will not reach the
heights of efficiency (or accuracy) that may be possible for a highly-designed
but specific solution. This is why emergent systems approaches are only rele-
vant when usual design are inapplicable as quoted in the introduction.

From the point of view of the difficulty of producing a system of a suitable
type AMAS shifts the burden. Using AMAS allows engineers to avoid speci-
fying an explicit goal and allows them to focus on feedback and action under
NCS. The increased flexibility of AMAS means that, if the internal system of
co-adjustment is working alright, it will probably give an adequate (or near-
adequate) result, and this means that if this level of performance is acceptable
to the engineer then this makes the design and testing tasks somewhat easier.
However the reliability of an AMAS will always be a contingent fact establish-
able by experiment and not establishable by formal means. When an AMAS
system fails, the debugging will be probably difficult as there are many com-
plex interactions and no reliable way of analysing the system to establish fault
(in fact fault may be as distributed as the computation).

www.manaraa.com

340 Methodologies and Software Engineering for Agent Systems

In summary AMAS probably has increased generality and flexibility but
possibly at the cost of peak efficiency and theoretical certainty.

6. Conclusion
The work herein described is part of a wider current of work which seeks

to understand complex emergent systems and, ultimately apply any useful dis-
covered properties in the production of useful software systems. For this to be
an acceptable way forward it needs to be established that systems that exploit
“emergent computational processes” (in the widest sense) can be relied upon.
Such reliance will never be amenable to formal demonstration, since there will
almost certainly always be a finite (but hopefully very small) probability of
failure. With emergent properties failure can never be completely ruled out.

However, in return for a lack of theoretical certainty, we hope that systems
exploiting “emergent computational processes” can demonstrate a greater reli-
ability in practice by being able to produce acceptable responses in unexpected
situations via mechanisms of internal adaptation. If the global cost function
was accessible to the agents on the lower levels, so that it could be utilised
to describe, explain or predict the phenomena arising at the upper level (the
system), then the system behaviour would not be emergent. Thus in emergent
systems the agents at the lower level can not have (complete) access to the
global cost function. This means that there will always be unknown aspects
to their environment which can not be fully anticipated by them or a designer.
For this reason the agents have to be, at least somewhat, adaptive so that they
will be able to cope (at some level) with these unexpected aspects. Given the
pervasiveness of situations with just such uncertainty about, we need some ap-
proaches to guide our partial specification of components so that the whole
system behaves tolerabley well. This chaper suggests that focussing upon the
non-cooperative situations from the point of view of each agent is a productive
way forward.

Theories about the scope and working of these computational mechanisms
are to be sought for, so as to aid in the construction of reliable systems and
guide further exploration. However these are not likely to be of the formal a
prior kind common in many areas of computer science, but of a contingent
nature established by the classic scientific experimental method.

www.manaraa.com

Chapter 17

ENGINEERING SWARMING SYSTEMS

H. Van Dyke Parunak and Sven A. Brueckner

Abstract Most MAS are inspired by classical AI, whose objective was to realize human-
level intelligence in a computer. As the field has moved toward multiple agents,
there has been a presumption that individual agents still aspire to high-level in-
telligence. Swarming systems follow an alternative model, inspired more by
artificial life than artificial intelligence. The individual agents in these systems
may be non-cognitive, but complex, robust cognition emerges from their inter-
actions. This chapter defines swarming and the concepts of self-organization
and emergence that underlie it. It describes the kinds of problems for which it is
well suited, explores why it functions, and outlines some initial principles of an
engineering methodology for developing artificial swarming systems.

1. What is Swarming?
We define swarming as “useful self-organization of multiple entities through

local interactions.” We begin by reviewing other definitions, then focus in
on organization and self-organization, and the relation of these concepts with
emergence.

1.1 Swarming
Definitions of swarming have been proposed by insect ethologists, roboti-

cists, and military historians. Of the many definitions that have been proposed,
a few will illustrate the main themes.

Students of biological systems use it to model decentralized self-organizing
behavior in populations of (usually simple) animals, e.g., (Bonabeau, 2003;
Bonabeau et al., 1999; Camazine et al., 2001; Parunak, 1997). Swarming has
been defined, e.g., (Bonabeau et al., 1999), as “distributed problem-solving de-
vices inspired by collective behavior of social insect colonies and other animal
societies.” Table 17.1 lists a few examples that have been studied.

The use of the term to describe artificial systems can be traced to Beni,
Hackwood, and Wang in the late 1980’s (Benni, 1988; Benni and Hackwood,

www.manaraa.com

342 Methodologies and Software Engineering for Agent Systems

1992; Benni and Wang, 1989; Benni and Wang, 1991; Hackwood and Beni,
1991; Hackwood and Beni, 1992). Their work focuses on populations of cel-
lular robots, and they use the term to describe self-organization through local
interactions. In the context of unpiloted air vehicles (UAV), Clough defines
a swarm as a “collection of autonomous individuals relying on local sensing
and reactive behaviors interacting such that a global behavior emerges from
the interactions” (Clough, 2003). He distinguishes swarming (resulting from
reactive behaviors of simple homogeneous entities performing simple tasks)
from the emergent behavior of heterogeneous teams of deliberative entities
performing complex tasks.

Recently, “swarming” has come into vogue in the military to describe a
battlefield tactic that involves decentralized, pulsed attacks (Arquilla and Ron-
feldt, 2000; Edwards, 2000; Edwards, 2003; Inbody, 2003). Military histori-
ans focus less on the process of self-organization and more on the resulting
organization itself: “the systematic pulsing of force and/or fire by dispersed,
internetted units, so as to strike the adversary from all directions simultane-
ously” (Arquilla and Ronfeldt, 2000); a “scheme of maneuver” consisting of
“a convergent attack of several semi-autonomous (or autonomous) units on a
target” (Edwards, 2003). The connection with insect applications is not coin-
cidental. Insect self-organization is robust, adaptive, and persistent, as anyone

www.manaraa.com

Engineering Swarming Systems 343

Figure 17.1. Egyptian “fly” medal for military heroes, 1550 BC (National Gallery of Art)

can attest who has tried to keep ants out of the kitchen or defeat a termite
infestation, and military commanders would love to be able to inflict the frus-
tration, discomfort, and demoralization that a swarm of bees can visit on their
victims. The linkage between swarming and warfare is ancient. In the Bible,
God promises to demoralize the indigenous population of Canaan before the
invading Israelites in the words, “I will send the hornet before you” (Exodus
23:28; cf. Deuteronomy 7:20; Joshua 24:12). In the eighteenth dynasty (1550
BC), the ancient Egyptians awarded military heroes a gold and silver medal in
the form of a stylized fly (Figure 17.1) (Hornung and Bryan, 2002), and there
is evidence that the ancients sometimes hurled hives of stinging insects against
their enemies (Neufeld, 1980).

For the purpose of this chapter, we will define swarming as “useful self-
organization of multiple entities through local interactions.” This definition
highlights elements of the others that have been suggested.

“Useful” emphasizes that we are interested in engineering systems that are
answerable to someone outside of the system boundary for their behavior.
Some forms of self-organized behavior, such as riots and oscillation, might
be interesting to a biologist, but undesirable in a commercial or military appli-
cation.

www.manaraa.com

344 Methodologies and Software Engineering for Agent Systems

Self-organization is most prominent in the robotic definitions, since the
concern there is to distinguish swarming from conventional top-down control
schemes. The military definition does not emphasize self-organization, per-
haps because of a historic tradition of top-down centralized control. We do not
require that the self-organization result from reactive rather than deliberative
individual behavior. Thus our definition includes not only Clough’s “swarms”
but also his “teams,” if they meet the other terms of the definition.

The notion of multiple entities is common to all definitions, and indeed is in-
trinsic to the common-sense use of the term. A major motivator for swarming is
the proliferation of autonomous platforms, such as vehicles, communications
systems, and sensor systems. Although these systems are often referred to as
“unmanned,” in current practice it would be more accurate to describe them as
“remotely manned.” The flight crew for a Predator UAV consists of two people.
Housing them in a control van rather than on board the flying platform consid-
erably reduces their risk, but does not reduce the manpower requirements for
fielding the vehicle. A major promise of swarming is multiplying the number
of platforms that a single person can effectively control.

Our focus on local interactions has two motivations: a need and a promise.
The need is a growing concern about communication congestion. The promise
is the observation that local interactions suffice to maintain long-range coordi-
nation in biological systems, so that we ought to be able to reverse-engineer
the underlying mechanisms for use in synthetic systems.

1.2 Organization

As used in expressions such as “self-organization,” the word “organization”
has at least three distinct, but related, meanings: it can refer to a mapping, a
process, or a structure.

is a mapping from a system to an ordered set, e.g.,

Such a mapping permits us to say that one system is “more organized” than
another (or than the same system at a different time).

Different detailed definitions for this mapping are found in the literature.
Common themes will include entropy and symmetry, as illustrated in Fig-
ure 17.2.

Denote a system by an upper-case letter, and its elements as the same letter
in lower-case, indexed. Thus and de-
note two systems. The entropy of a system A is denoted by S(A). With these
concepts, we can meaningfully assert Org(A) > Org(B) if

S(B) > S(A) or

www.manaraa.com

Engineering Swarming Systems 345

Figure 17.2. Symmetry vs. organization

B has a higher order of symmetry than A.

Entropy can be computed against different bases, such as the spatial dis-
tribution of agents, their directions of movement, the behaviors open to them
at any moment, or the time series generated by their actions. This variety
can lead to the concern that entropy, and thus is in the eye of
the beholder. In fact, methods exist for defining changes in entropy in an un-
ambiguous way (Crutchfield, 1994; Shalizi, 2001), though discussing them in
detail is beyond the scope of this survey.

is a process in a single system in which in-
creases with time:

is the structure resulting from and can be
measured with

1.3 Self-Organization and Emergence

With this understanding of “organization,” it would seem natural to define
“self-organization” as a process that reduces the entropy of
a system without external intervention (motivating the modifier “self”). This
definition is in line with some that have been proposed in the literature, for
example:

Camazine (Camazine et al., 2001): “Pattern formation occurs through
interactions internal to the system, without intervention by external di-
recting influences (leaders, blueprints, recipes, templates).”

Bonabeau (Bonabeau et al., 1999): “A set of dynamical interactions
whereby structures appear at the global level of a system from inter-
actions among its lower-level components. …The rules specifying the
interactions are executed on the basis of purely local information, with-
out reference to the global pattern.”

www.manaraa.com

346 Methodologies and Software Engineering for Agent Systems

Figure 17.3. Comparing self-organization and emergence

These definitions emphasize the system boundary (through terms such as
“local” and “internal”). The second includes three other concepts as well:

A distinction of multiple levels within a system;

“Interactions” among entities at lower levels of the system; and

The “appearance” or “emergence” of properties and structures at higher
levels from these interactions.

Other definitions of “self-organization” rely only on these three themes,
without focusing on the system boundary, for example:

Biebricher (Biebricher, C. K., 1995): The process by which individual
subunits achieve, through their cooperative interactions, states charac-
terized by new, emergent properties transcending the properties of their
constitutive parts.

Schweitzer (Schweitzer and Zimmermann, 2001): The emergence of
new system properties not readily predicted from the basic equations.

To achieve greater precision, we propose distinguishing between emergence
and self-organization on the basis of the contrast between the horizontal con-
cept of system boundary and the vertical concept of levels (Figure 17.3).

We define Self-Organization as organization:

Among elements within a level; and

Without information flow across the boundary.

The second law of thermodynamics demands that there be some energy flow
across the boundary of any system whose organization increases over time.
Self-organization requires that this energy flow not contain information. This

www.manaraa.com

Engineering Swarming Systems 347

Figure 17.4. Emergence as a subcategory of self-organization

definition depends critically on the location of the system boundary. If the
boundary is moved, a system’s character as self-organizing or not may change.

We define Emergence as a subcategory of self-organization (Figure 17.4).
Emergence (as we use the term) describes the appearance of structures at a
higher level that are not explicitly represented in lower-level components. The
reliance of swarming systems on locally available information makes it diffi-
cult for them to reason explicitly about higher-level structures, so emergence
tends to be an important mechanism in swarming systems.

Neither self-organization nor emergence is necessarily good. The formation
of structures will correspond to a reduction in entropy, whether those struc-
tures support or frustrate the objectives of the system stakeholders. The fact
that emergent structures can be pathological (as in the case of race conditions
or herding behavior) may explain the apprehension with which some people
view emergence. For example, Wooldridge and Jennings assert (Wooldridge
and Jennings, 1998), “Emergent functionality is akin to chaos …” They urge
engineers of agent systems to “severely restrict the way in which agents can
interact with one-another … ensure that there are few channels of communi-
cation between agents …restrict the way in which agents interact” in order to
reduce the likelihood of emergent behavior. A consequence of this restriction
is that any desired system-level behavior must be explicitly represented in the
lower-level components, a requirement that is difficult to meet if the system’s
requirements include responding gracefully to unanticipated changes in its en-
vironment. Our alternative approach is to develop principles for designing and
developing systems whose emergent behavior is beneficial or at least benign.

This difference in vision leads to two distinct approaches to building MAS
(Figure 17.5).

www.manaraa.com

348 Methodologies and Software Engineering for Agent Systems

Figure 17.5. Two families of self-organizing systems

Classical MAS achieve self-organization through deliberation among
fairly sophisticated (“coarse-grained”) agents. Emergent systems can
use much simpler reactive agents.

Reasoning in emergent self-organization is often non-symbolic, while
classical systems are usually symbolic.

Because of the need for representing system-level behavior explicitly
at all layers, non-emergent systems are best suited for exploiting well-
known environments. The ability of emergent systems to produce new
behaviors is appropriate for more exploratory problems.

A front line of our current research is understanding how to hybridize these
two families of systems.

1.4 Alternatives to Self-Organization

(Camazine et al., 2001) identifies four alternatives to self-organization: lead-
ers, recipes, blueprints, and templates.

A leader is a single agent that receives status information from the other
agents, decides on the action that each should take, and issues com-
mands. This paradigm is sometimes called “centralized control.” If the
leader is not part of the system, the flow of the leader’s commands to the
other agents crosses the system boundary.

A recipe is a script (a process description that is sequenced in time) that
is constructed by the system’s designer and installed at compile-time.

www.manaraa.com

Engineering Swarming Systems 349

If the designer is not part of the system, this script crosses the system
boundary when it is installed.

A blueprint is a map (a spatial prescription) that is constructed by the
system’s designer and installed at compile-time. If the designer is not
part of the system, this map crosses the system boundary when it is in-
stalled.

A template is a structure in the system’s environment (e.g., the walls of
a soccer arena) that constraints the system’s behavior. If this structure is
not part of the system, information about it crosses the system boundary
as the system interacts with it.

It is useful to keep these alternatives in mind for two reasons. First, self-
organization is not the best answer for every problem. In some cases, an al-
ternative approach may be preferable, and responsible engineering requires
awareness of these alternatives. Second, in each case, the system can be made
self-organizing by expanding the system boundaries to include the source of
the information. Thus many agent architectures include a (software) leader
that directs the actions of the other agents. The engineer must carefully spec-
ify the system boundary, and may be able to adjust the behavior of the system
significantly by shifting the boundary.

2. Where would You Want to Use Swarming?

Five domain features indicate the appropriateness of swarming: discrete-
ness, deprivation, distribution, decentralization, and dynamism.

2.1 Discrete

It is easiest to apply agents (whether self-organizing or not) to a domain if
the domain consists of discrete elements that can be mapped onto the agents.
Some forms of organization also are achieved most naturally in a discrete sys-
tem, for example, those that are characterized as a graph structure of some
sort.

2.2 Deprived (Resource-Constrained)
We say that a system is “deprived” (or resource constrained) when limits

on resources (such as processing power, communications bandwidth, or stor-
age) rule out brute-force methods. For instance, if enough communications
bandwidth is available, every agent can communicate directly with every other
agent. If agents have enough processing power, they can reason about the mas-
sive input they will receive from other agents. If they have enough storage,

www.manaraa.com

350 Methodologies and Software Engineering for Agent Systems

they can maintain arbitrarily large sets of instructions telling them what to do
in each circumstance.

Under such assumptions, swarming architectures would seem to have lit-
tle benefit. Some futurists extrapolate the historically exponential increases
in hardware processing power, storage, and bandwidth, and claim that these
constraints will quickly disappear. At the hardware level, Moore’s law and
its analogs for bandwidth and storage give good reason to be optimistic. How-
ever, a computer system is more than hardware. It is constrained by theoretical,
psychological, commercial, and physical issues as well. For example:

No matter how much storage is available, the knowledge engineering ef-
fort required to construct large knowledge bases remains a formidable
psychological obstacle to completely defining the behavior of every sin-
gle agent.

No matter how fast processors get, the theory of NP-completeness points
out that the time required to solve reasonably-sized problems in many
important categories will still be longer than the age of the universe. An
important instance of this challenge is the truth maintenance problem,
the challenge of detecting inconsistencies in a knowledge base that result
from changes in the world, which is NP-hard for reasonably expressive
logics.

No matter how much bandwidth the hardware can support, the market
may not make it available in the configuration needed for a specific prob-
lem. Military planners, for instance, have long counted on the avail-
ability of commercial satellite channels, but the commercial market has
moved toward land-based fiber backbones, resulting in a major shortfall
in projected available bandwidth for military deployments in underde-
veloped areas.

The growing emphasis on Pervasive Computing and nanotechnology re-
quires the deployment of computation on very small devices. The phys-
ical limitations of such devices will not permit them to support the level
of processing, storage, and communications that can be realized on un-
constrained devices.

Several characteristics of swarming systems make them good candidates for
deprived environments. For example:

Interactions among system components are typically local. If informa-
tion needs to move long distances, it does so by propagation rather than
direct transfer. Local interactions limit the number of neighbors about
whom each agent must reason at a time, and enable the use of low-power
transmissions that permit bandwidth to be reused every few kilometers.

www.manaraa.com

Engineering Swarming Systems 351

Because system-level behaviors do not need to be specified at the level
of each element, the knowledge engineering and storage requirements
are greatly reduced.

Emergent systems commonly maintain information by continuously re-
freshing current information and letting obsolete information evaporate.
This process guarantees that inconsistencies remove themselves within a
specified time horizon, without the need for complex truth-maintenance
procedures.

2.3 Distributed

The notion of “local interactions” is central to our definition of swarming.
Keeping interactions local is a powerful strategy for dealing with deprived sys-
tems, but requires that the entities in the problem domain be distributed over
some topology within which interactions can be localized.

The most common topology is a low-dimensional Euclidean manifold, or
a graph that can be embedded in such a manifold. For example, insect stig-
mergy takes place on physical surfaces that, at least locally, are embedded in
two-dimensional manifolds. Most engineered applications of swarming such
as path planning (Parunak et al., 2002b), pattern recognition (Brueckner and
Parunak, 2002), sensor network self-organization, and ant-colony optimiza-
tion (Dorigo et al., 1996), follow this pattern. In these applications, locality
can be defined in terms of a distance metric, and enforced by physical con-
straints on communications (e.g., a node’s neighbors are all the other nodes
with whom it has radio contact).

More recent work, e.g., in telecommunications (Heusse et al., 1998), or in
our laboratory, on semantic structures, successfully mediates agent interactions
via scale-free small-world graphs. Such graphs have long-range shortcuts and
so are typically not embeddable in low-dimensional manifolds. These short-
cuts pose problems for classical definitions of distance, but locality of interac-
tion can still be defined in terms of nearest-neighbor graph connectivity, and
the empirical success of these latter efforts shows that this form of locality is
sufficient to achieve coordination.

2.4 Decentralized
As a system characteristic, decentralization is orthogonal to distribution. In

a centralized system, all transactions require the services of a single distin-
guished element. If the system is not distributed, the central point and the
system are identical. If it is distributed, the central point is one of the elements,
with which the others must communicate. A common extension of centraliza-
tion in a distributed system is the hierarchy, in which the central element for

www.manaraa.com

352 Methodologies and Software Engineering for Agent Systems

a small group of nodes joins with other nodes at its level in reporting to a yet
higher central element, and so on until the top node is reached.

Swarming can be a poor choice for applications that require centralization.
The restriction to local interactions means that communications between pe-
ripheral elements and the central element is an emergent behavior of the sys-
tem, which may not meet the quality of service requirements or the need for
detailed predictability that often lead to a requirement for central control. How-
ever, systems designers should be cautious about accepting a centralized archi-
tecture. Such architectures have at least three weaknesses.

They are inherently resistant to increases in scale. As the system grows,
the capacity of the central element must also grow. In decentralized
approaches, new elements can be added without changing any of the
existing elements.

A frequent role of the central element is to mediate interactions among
lower-level nodes (as in the mediator architecture, see http://ksi.

cpsc.ucalgary.ca/projects/Mediator). This technique may actu-
ally lengthen the communication path between two nodes, leading to
undesirable delays as messages travel up, then back down, the hierarchy.

The central element and the communication paths leading to it are vul-
nerable to attack or failure, making the system less robust than a swarm-
ing system.

Centralized architectures often result more from tradition than from abso-
lute system requirements, and a growing body of cases suggests that accept-
able functionality can be achieved, with improved scalability, timeliness, and
robustness, in a decentralized way. In addition, centralization is impossible
in some cases (such as achieving coordination among a population of entities
whose members are not known in advance and who do not all have access to
a common element). Swarming techniques are a natural candidate for imple-
menting decentralized architectures.

2.5 Dynamic
A system is dynamic if its requirements change during its lifetime. The

emergent behavior that is characteristic of swarming is a powerful way for
dealing with changed requirements. The system elements do not need to en-
code the system-level behavior explicitly, and so do not need to be modified
when those requirements change. Three aspects of such change affect the need
for emergence: scope, speed, and obscurity.

Scope characterizes the amount of change to which a system’s requirements
are susceptible. The less the scope of change, the more likely it is that the sys-
tem as originally configured will deliver acceptable performance. The greater

www.manaraa.com

Engineering Swarming Systems 353

the degree of change, the more value there is in the ability of the elements to
reorganize to produce new emergent behaviors that were not active in the initial
configuration.

Speed characterizes the rapidity of change, and affects the desirability of
swarming by way of the distinction between centralized and decentralized ar-
chitectures. If the system changes slowly, non-swarming techniques that rely
on centralized organizations can tolerate the time delays imposed by hierarchi-
cal communications. As the rate of change begins to outpace the communi-
cations time through the hierarchy, centralized organizations find themselves
perpetually providing the answers to yesterday’s problems, and unable to re-
spond rapidly enough. A common response is to flatten the organization and
empower lower-level nodes to act on local information, essentially moving to-
ward a swarming architecture.

Obscurity reflects the degree to which later requirements can be anticipated
by the original designer. Even if changes are rapid and wide in scope, if they
follow along the lines anticipated by the designer, simple parameter adjust-
ments in a non-emergent architecture may be able to cope with them. Swarm-
ing systems are much better at enabling a system to satisfy requirements that
would be surprising to its original designer.

3. Why does Swarming Work?

Swarming is a discovery, not an invention. It is a naturally occurring phe-
nomenon that we seek to imitate in engineered systems. Design principles for
effective artificial swarming systems must be developed from an understanding
of why swarming works in natural systems.

We analyze these underlying principles of swarming in terms of three re-
strictions on the space of all possible multi-process systems, outlined in Fig-
ure 17.3.

The various processes must be coupled with one another so that they can
interact.

This interaction must be self-sustaining, or autocatalytic. Autocatalysis
enables self-organization, but it is not necessarily useful.

The self-organizing system must produce functions that are useful to the
system’s stakeholders.

In discussing each of these, we first review the concept and its mechanisms,
then discuss design principles to which it leads.

www.manaraa.com

354 Methodologies and Software Engineering for Agent Systems

Figure 17.6. Three enablers for swarming systems

3.1 Coupled Processes

How Processes can be Coupled. Agents must exchange information if
they are to self-organize. Different patterns of information exchange are pos-
sible, and can be classified along two dimensions: Topology and Information
Flow (Table 17.2).

The Topology dimension depends on two different kinds of relations that
agents can have with one another. When the agents can say “No” to one an-
other within the rules of the system, they are “peer agents.” When one of them
(say agent A) can say “No” to the other (B), but B cannot say “No” to A, we

www.manaraa.com

Engineering Swarming Systems 355

call A the “distinguished agent” and B the “subordinate.” The relationship be-
tween two agents may be fairly fixed (for example, the relationship between
a human programmer and her software agent). Or it may vary over time (as
when peer agents negotiate a work plan that calls for one of them to supervise
the other, resulting in a distinguished-subordinate relationship during execu-
tion). These concepts can be developed more formally through dependency
and autonomy theory (Castelfranchi, 2000; Parunak, 1990). Centralized in-
formation exchange is between a distinguished and a subordinate agent, while
decentralized information exchange is between peer agents.

The Information Flow dimension relies on environmental state variables that
the agents can manipulate and sense. All information exchange is ultimately
mediated by the environment, but the role of the environment is sometimes not
modeled explicitly. The information flow from one agent to another is Direct
if no intermediate manipulation of information is modeled, and Indirect if it is
explicitly modeled.

Centralized Mechanisms. They all involve communication between the
distinguished agent and its subordinates. This flow may be direct (when the
distinguished agent constructs or commands its subordinates) or indirect (when
the distinguished agent constrains the subordinates by manipulating exogenous
environmental variables visible to the subordinates). In correlation through
command, used commonly in robot soccer, holonic manufacturing, and some
simulation applications, agents behave much like objects, executing methods
invoked by incoming messages. The focal point algorithm advocated by (Fen-
ster et al., 1995) and the common utility functions implicit in (Genesereth et
al., 1986) both rely on construction (common programming). In indirect cen-
tralized mechanisms, subordinates jointly sense changes in a shared exogenous
environmental variable. The variable’s dynamics are independent of agent ac-
tions, so it cannot move information between subordinates. But it may serve
as a synchronizing signal that correlates the agents’ actions. The experimenter
who configures targets and obstacles in an experimental testbed is constraining
the subordinates, supporting correlation through indirect centralized action.

Decentralized mechanisms all involve communication among peers. Most
negotiation research focuses on direct peer-to-peer information flows (“con-
versation”). Indirect decentralized flows occur when peers make and sense
changes to environmental variables. This class of coordination is called “stig-
mergy” (Grassé, 1959), from the Greek words stigma “sign” and ergon “work”:
the work performed by agents in the environment guides their later actions.
The information stored in the environment forms a field that supports agent
coordination, leading to the term “co[ordination]-field” for this class of tech-
nique (Mamei et al., 2003b). Such techniques are common in biological dis-
tributed decentralized systems such as insect colonies (Parunak, 1997). A com-

www.manaraa.com

356 Methodologies and Software Engineering for Agent Systems

mon form of stigmergy is resource competition, which occurs when agents
seek access to limited resources. For example, if one agent consumes part of a
shared resource, other agents accessing that resource will observe its reduced
availability, and may modify their behavior accordingly. Even less directly, if
one agent increases its use of resource A, thereby increasing its maintenance
requirements, the loading on maintenance resource B may increase, decreasing
its availability to other agents who would like to access B directly. In the latter
case, environmental processes contribute to the dynamics of the state variables
involved.

Different varieties of stigmergy can be distinguished. One distinction con-
cerns whether the signs consist of special markers that agents deposit in the en-
vironment (“marker-based stigmergy”) or whether agents base their actions on
the current state of the solution (“sematectonic stigmergy”). Another distinc-
tion focuses on whether the environmental signals are a single scalar quantity,
analogous to a potential field (“quantitative stigmergy”) or whether they form
a set of discrete options (“qualitative stigmergy”). As shown in Table 17.3, the
two distinctions are orthogonal.

Stigmergic mechanisms have a number of attractive features, particularly
for swarming systems.

Simplicity. The logic for individual agents is much simpler than for an
individually intelligent agent. This simplicity has three collateral benefits.

The agents are easier to program and prove correct at the level of indi-
vidual behavior.

They can run on extremely small platforms, such as microchip-based
“smart dust” (Pister, 2001).

www.manaraa.com

Engineering Swarming Systems 357

They can be trained with genetic algorithms or particle-swarm methods
rather than requiring detailed knowledge engineering.

Scalable. Stigmergic mechanisms scale well to large numbers of entities.
In fact, unlike many intelligent agent approaches, stigmergy requires multi-
ple entities to function, and performance typically improves as the number of
entities increases. Stigmergy facilitates scalability because the environment
imposes locality on agent interactions. Agents interact with the environment
only in their immediate vicinity. Increases in the number of agents are typi-
cally associated with an extension of the environment. The density of agents
over the environment, and thus the processing load on each agent, usually does
not increase.

Robustness. Because stigmergic deployments favor large numbers of en-
tities that are continuously organizing themselves, the system’s performance
is robust against the loss of a few individuals. Such losses can be tolerated
economically because each individual is simple and inexpensive.

Environmental Integration. Explicit use of the environment in agent inter-
actions means that environmental dynamics are directly integrated into the sys-
tem’s control, and in fact can enhance system performance. A system’s level
of organization is inversely related to its symmetry (Figure 17.2), and a critical
function in achieving self-organization in any system made up of large num-
bers of similar elements is breaking the natural symmetries among them (Ball,
1996). Environmental noise is usually a threat to conventional control strate-
gies, but stigmergic systems exploit it as a natural way to break symmetries
among the entities and enable them to self-organize. We make extensive use
of stigmergy in our applications, building on the theoretical foundation and
pheromone infrastructure outlined in (Brueckner, 2000).

The following are the design principles derived from coupled processes.
Coupling 1: Use a distributed environment. Stigmergy is most benefi-

cial when agents can be localized in the environment with which they interact
by sensing and acting. A distributed environment enhances this localization,
permitting individual agents to be simpler (because their attention span can be
more local) and enhancing scalability.

Coupling 2: Use an active environment. If the environment supports its
own processes, it can contribute to overall system operation. For example,
evaporation of pheromones in the ants’ environment is a primitive form of
truth maintenance, removing obsolete information without requiring attention
by the agents who use that information.

Coupling 3: Keep agents small. Agents should be small in comparison
with the overall system, to support locality of interaction. This criterion is not
sufficient to guarantee locality of interaction, but it is a necessary condition.
The fewer agents there are, the more functionality each of them has to provide,
and the more of the problem space it has to cover.

www.manaraa.com

358 Methodologies and Software Engineering for Agent Systems

Figure 17.7. Relations among Processes, (i) A simple reaction; (ii) D catalyzes the conversion
of A and B to C; (iii) An autocatalytic reaction; and (iv) An autocatalytic set of processes (shown
as a ring, but other topologies are possible)

Coupling 4: Map agents to Entities, not Functions. Choosing to repre-
sent domain entities rather than functions as agents takes advantage of the fact
that in our universe, entities are bounded in space and thus have intrinsic lo-
cality. Functions tend to be defined globally, and making an agent responsible
for a function is likely to lead to many non-local interactions. For example,
in a factory, each machine (an entity) has fairly local interactions with other
machines, parts, and workers in its area of the plant, but a function (such as
scheduling) must take into account all of the machines in the entire plant.

3.2 Autocatalytic Potential

What is Autocatalysis? The concept of autocatalysis comes from chem-
istry. A catalyst is a substance that facilitates a chemical reaction without be-
ing permanently changed. In autocatalysis, a product of a reaction serves as a
catalyst for that same reaction. An autocatalytic set is a set of reactions that are
not individually autocatalytic, but whose products catalyze one another. The
result is that the behaviors of the reactions in the set are correlated with one an-
other. If reaction A speeds up (say, due to an increased supply of its reagents),
so does any reaction catalyzed by the products of A. If A slows down, so do
its autocatalytic partners. This correlation causes a decrease in the entropy
of the overall set, as measured over the reaction rates, so we would describe
such a system as self-organizing. Figure 17.7 summarizes these concepts using
reaction schemata.

Not all processes that are coupled, are autocatalytic. Autocatalyticity re-
quires a continuous closed flow of information among the processes to keep
the system moving. If the product of process A catalyzes process B, but pro-
cess B’s products have no effect (either directly or indirectly) on process A,

www.manaraa.com

Engineering Swarming Systems 359

Figure 17.8. Autocatalytic flows in pheromone dynamics

the system is not autocatalytic. Furthermore, a system might be autocatalytic
in some regions of its state space but not in others.

It is natural to extend this concept from chemistry to any system of interact-
ing processes, such as a MAS. A set of agents has autocatalytic potential if in
some regions of their joint state space, their interaction causes system entropy
to decrease (and thus leads to increased organization). In that region of state
space, they are autocatalytic.

Figure 17.8 exhibits two different approaches to achieving the closed infor-
mation flow that supports autocatalysis in MAS.

The dashed line between the two agents represents conventional agent
interactions: the agents perceive one another, reason about how to co-
ordinate their activities, and then act. The information flow in this case
is maintained by the agents’ perception of one another. As the number
of agents increases, this approach requires an increasing amount of pro-
cessing power on the part of each agent. If an agent is unable to sense or
be sensed by other agents in the system, the information flow is broken,
and the system’s ability to self-organize will be reduced.

The stigmergic approach used in swarming is represented by the solid
lines forming a triangle of “Rational Action,” “Dissipation,” and “Per-

www.manaraa.com

360 Methodologies and Software Engineering for Agent Systems

ception.” Agents deposit a “currency” (pheromone in the case of ants;
money in the case of a market) into a shared environment. The aggre-
gation of this currency from multiple deposits, and dissipative forces
in the environment (evaporation in the case of pheromones), generate
gradients that each agent can sense and to which it can respond. This
continuous cycle provides the information flow that keeps the processes
coordinated. Because the environment integrates the information from
each agent, and because agents need sense only their local environment,
the number of agents can increase without requiring more processing
power on the part of each agent.

Two points are important to understand about autocatalyticity.

In spite of the reduction of entropy, autocatalyticity does not violate the
Second Law of Thermodynamics. The rationalization is most clearly
understood in the stigmergic case (Figure 17.8). Entropy reduction oc-
curs at the macro level (the individual agents), but the dissipation of
pheromone at the micro level generates more than enough entropy to
compensate. This entropy balance can actually be measured experimen-
tally (Parunak and Brueckner, 2001).

Information flows are necessary to support self-organization, but they
are not sufficient. A set of coupled processes may have a very large
space of potential operating parameters, and may achieve autocatalytic-
ity only in a small region of this space. Nevertheless, if a system does
not have closed information flows, it will not be able to maintain self-
organization.

The following are design principles derived from autocatalysis.
Autocatalysis 1: Think Flows rather than Transitions. Our training as

computer scientists leads us to conceive of processes in terms of discrete state
transitions, but the role of autocatalysis in supporting self-organization urges
us to pay attention to the flows of information among them, and to ensure that
these flows include closed loops.

Autocatalysis 2: Boost and Bound. Keeping flows moving requires some
mechanism for reinforcing overall system activity. Keeping flows from explod-
ing requires some mechanism for restricting them. These mechanisms may be
traditional positive and negative feedback loops, in which activity at one epoch
facilitates or restrains activity at a successive one. Or they may be less adap-
tive mechanisms such as mechanisms for continually generating new agents
and for terminating those that have run for a specified period (“programmed
agent death”).

Autocatalysis 3: Diversify agents to keep flows going. Just as heat will not
flow between two bodies of equal temperature, and water will not flow between

www.manaraa.com

Engineering Swarming Systems 361

two areas of equal elevation, information will not flow between two identical
agents. They can send messages back and forth, but these messages carry no
information that is new to the receiving agent, and so cannot change its state
or its subsequent behavior. Maintaining autocatalytic flows requires diversity
among the agent population. This diversity can be achieved in several ways.
Each agent’s location in the environment may be enough to distinguish it from
other agents and support flows, but if agents have the same movement rules
and are launched at a single point, they will not spread out. If agents have
different experiences, learning may enable them to diversify, but again, reuse
of underlying code will often lead to stereotyped behavior. In general, we find
it useful to incorporate a stochastic element in agent decision-making. In this
way, the decisions and behaviors of agents with identical code will diversify
over time, breaking the symmetry among them and enabling information flows
that can sustain self-organization.

3.3 Function

How Systems Adjust to Required Function. Process interaction must
support autocatalysis if a system is to support ongoing self-organization. From
an engineering perspective, a further step is necessary. Self-organization in
itself is not necessarily useful. Autocatalysis might sustain undesirable oscil-
lations or thrashing in a system, or keep it locked in some pathological behav-
ior. We want to construct systems that not only organize themselves, but that
yield structures that solve some problem we need to address. There are two
broad approaches to this problem, broadly corresponding to the distinction in
classical AI between the scruffy and the neat approaches. It is likely that as the
use of self-organizing systems matures, a hybrid of both approaches will prove
necessary.

One approach, exemplified in amorphous computing (Abelson et al., 2000)
and chapter 15, is to build up, by trial and error, a set of programming metaphors
and techniques that can then be used as building blocks to assemble useful sys-
tems.

An alternative approach is to seek an algorithm that, given a high-level spec-
ification for a system, can compute the local behaviors needed to generate this
global behavior. State-of-the-art algorithms of this sort are based not on de-
sign, but on selection. Selection in turn requires a system with a wide range of
behavioral potential, and a way to exert pressure to select from this wide range
of behaviors the ones that are actually desired.

One way to ensure a broad range of behavioral potential is to construct non-
linear systems that can exhibit formally chaotic behavior. From a classical
engineering perspective, chaos is undesirable because it is unpredictable in the
long range. However, from an emergent perspective, chaos is desirable be-

www.manaraa.com

362 Methodologies and Software Engineering for Agent Systems

cause it offers a simple way to sample a broad subset of the system’s space of
possible behaviors.

We can illustrate this somewhat nonintuitive insight with the simple logistic
equation

for and Figure 17.9 shows a plot of the through
iterates of this function, starting at x = 0.5, for various values of g. The

plot has three distinct regions.

For g < 3, x converges to a single value, which depends on g. In this
region, the system has only a single behavior for each value of g. If x is
perturbed away from this value, it will quickly return. The system has
no behavioral diversity.

For oscillates among a number of discrete
alternatives. The Figure clearly shows regions with two, then four alter-
natives. In fact, as g approaches the upper limit of this range, the number
of alternatives doubles repeatedly, so that a value of g can be found to
yield any number of alternatives that is an integer power of two.

For the system is formally chaotic. In this region,
x varies widely over its range, and (left to its own behavior) never repeats
its position exactly. This region offers the broadest behavioral potential
for x.

The behavioral diversity evident in the chaotic regime is useful only if some
way can be found to lock the system down to a particular behavior, but the
basic mechanisms for such control have been known for over a decade (Ott et
al., 1990). The basic idea is to let the chaotic dynamics explore the state space,
and when the system reaches a desirable region, to apply a small control force
to keep the system there.

It may seem that chaos is a complicated way to generate potential behaviors,
and that it would be simpler to use a random number generator. In fact, virtu-
ally all such generators are in fact nonlinear systems executing in their chaotic
regime.

In a MAS, the key to applying this generate-and-test insight is finding a way
to exert selective pressure to keep the system balanced at the desired location.
Natural systems have inspired two broad classes of algorithm for this purpose:
synthetic evolution, and particle swarm optimization.

Synthetic evolution is modeled on biological evolution. Many different al-
gorithms have been developed (Jacob, 2001), but they share the idea of a popu-
lation of potential solutions that varies over time, with fitter solutions persisting
and less fit ones being discarded. The variational mechanisms (which usually

www.manaraa.com

Engineering Swarming Systems 363

Figure 17.9. Behavioral diversity in the logistic function

include random mutation) explore the system’s potential behaviors, while the
death of less fit solutions and the perpetuation of more fit ones is the control
pressure that selects the desired behavior.

Particle swarm optimization (Kennedy et al., 2001) is inspired by the flock-
ing behavior of birds. In adaptations of this behavior to computation, solutions
do not undergo birth and death (as in evolutionary mechanisms). Instead, they
are distributed in some space (which may be the problem space, or an arbitrary
structure), and share with their nearest neighbors the best solutions they have
found so far. Each solution entity then adjusts its own behavior to take into
account a blend of its own experience and that of its neighbors.

Market-based bidding mechanisms may be considered a variation on parti-
cle swarm optimization. The similarity lies in selection via behavioral modifi-
cation through the exchange of information rather than changes in the compo-
sition of the population. The approaches differ in the use that is made of the
shared information. In the particle swarm, agents imitate one another based on
the information they receive, while in bidding schemes, they use this informa-
tion in more complicated computations to determine their behavior.

The following are design principles derived from functional adjustment.
Function 1: Generate behavioral diversity. Structure agents to ensure

that their collective behavior will explore the behavioral space as widely as
possible. One formula for this objective has three parts.

Let each agent support multiple functions.

Let each function require multiple agents.

www.manaraa.com

364 Methodologies and Software Engineering for Agent Systems

Break the symmetry among the agents with random or chaotic mecha-
nisms.

The first two points ensure that system functionality emerges from agent in-
teractions, and that any given functionality can be composed in multiple ways.
The third ensures a diversity of outcomes, depending on which agents join
together to provide a given function at a particular time.

Function 2: Give agents access to a fitness measure. Agents need to make
local decisions that foster global goals, an insight that is supported by for-
mal analysis in Wolpert’s Collective Intelligence (COIN) research (see http:

//ic.arc.nasa.gov/projects/COIN). A major challenge is finding measures
that can be evaluated by agents on the basis of local information, but that will
correlate with overall system state. Determining such measures is a matter for
experimentation, although thermodynamic concepts relating short-range inter-
actions to long-term correlations have the potential to yield a theoretical foun-
dation. In one application, we have found the entropy computed over the set
of behavioral options open to an agent to be a useful measure of the degree of
overall system convergence (Brueckner and Parunak, 2003) that agents can use
to make intelligent decisions about bidding in resource allocation problems.

Function 3: Provide a mechanism for selecting among alternative be-
haviors. If an adequate local fitness metric can be found, it may suffice to
guide the behavior of individual agents. Otherwise, agents should compare
their behavior with one another, either to vary the composition of the overall
population (as in synthetic evolution) or to enable individual agents to vary
their behavior (as in particle swarm optimization).

How can We Apply these Principles in Engineered
Systems?

4.

To illustrate the use of these principles, we briefly review several systems,
described in more detail in other publications, that produce high-level cognitive
behavior from swarming. In each case we review the problem being solved,
summarize the behavior of the local elements, and discuss how they reflect the
ten design principles outlined in section 3.

4.1 Pattern Recognition in a Sensor Network (Brueckner
and Parunak, 2002)

The Problem. Driven by the need for greater efficiency and agility in busi-
ness and public transactions, more and more data is becoming digitally avail-
able in real time on computer networks. These heterogeneous data streams
reflect many aspects of the behavior of groups of individuals in a population
(e.g., traffic flow, shopping and leisure activities, healthcare needs). A new

www.manaraa.com

Engineering Swarming Systems 365

generation of active surveillance systems that integrate a large number of spa-
tially distributed heterogeneous data streams may be used in various applica-
tions, for instance, to protect a civilian population from bioterrorist attacks, to
support real-time traffic coordination systems, to trace collaboration structures
in terrorist networks, or to manage public healthcare efficiently.

Active surveillance of population-level activities includes the detection and
classification of spatio-temporal patterns across a large number of real-time
data streams. Approaches that analyze data in a central computing facility
tend to be overwhelmed with the amount of data that needs to be transferred
and processed in a timely fashion. Also, centralized processing raises pro-
prietary and privacy concerns that may make many data sources inaccessible.
Our architecture avoids these problems through decentralization. Instead of
transferring the data to a centralized processing facility, we transfer the pro-
cesses (fine-grained agents) to the data sources. This architecture addresses
both of these concerns. Access restrictions may be guaranteed through proven
local processes. Bandwidth is reduced because long-distance communication
of data is needed only when the network detects a pattern and needs to invoke a
higher authority for action. Ultimately, one would like the response itself to be
a distributed emergent response, but political realities suggest that in the imme-
diate future self-organizing recognition systems will be much more acceptable
than self-organizing systems that take action on people and property.

Summary of Architecture. We consider a distributed swarming agent
architecture the most appropriate answer to the challenge of detecting spatio-
temporal patterns in a network of heterogeneous sources of potentially propri-
etary real-time data. Instead of attempting to stream a tremendous amount of
data into a central processing facility, we integrate the external sources into a
network for mobile agent computing. Essentially, this network of agent pro-
cessing nodes is a massively parallel computer for pattern detection and clas-
sification with a unique way of self-organizing the processing tasks.

Into our network of processing nodes we deploy large populations of simple
mobile agents that coordinate their activities using stigmergy. Each node gen-
erates agents at a constant rate, and agents die after a fixed lifetime, thus ensur-
ing coverage of the entire area under surveillance. Using artificial pheromones,
the agents dynamically organize themselves around patterns observed in the
data streams. The emergence of globally coordinated behavior through stig-
mergic interactions among many fine-grained software agents in a shared com-
putational environment is facilitated by a component of the distributed runtime
environment that emulates actual pheromone dynamics (aggregation, evapo-
ration, dispersion) in the physical world. Our heterogeneous agent system
continuously executes two parallel processes: pattern detection and pattern
classification. More populations of agents could be deployed at any time, for

www.manaraa.com

366 Methodologies and Software Engineering for Agent Systems

Figure 17.10. Stigmergic pattern detection and classification

instance to introduce additional criteria in the detection process, or to add more
classification schemes.

The agents executing the detection process (“Detectors”) continuously pro-
cess the input data and search for spatio-temporal structures, using two sets of
flavors of pheromones. Detectors use Search pheromones to mark suspicious
areas of the network and attract other detectors to confirm their discovery. A
second set of Find pheromones, which require more deposits to stabilize, is
used to record this confirmation, informing a local node that it is likely to be
an instance of the pattern in question and enabling it to take appropriate ac-
tion. Detectors search for unusually high differences in the data streams of
neighboring locations in the network.

“Classifier” agents are responsible for the classification of the detected pat-
terns according to a particular classification scheme. The pattern classification
scheme used in our demonstration correlates the detected patterns with a par-
ticular, dynamically changing geographic direction (wind, modeling the dis-
persion of a bioterrorist weapon). The Classifiers move in a way that models
the pattern being sought, and deposit a Pattern pheromone when they encounter
a pattern that matches their behavior. Figure 17.10 shows the performance of
the algorithm. The upper-left display is a grid in which each cell is set either
to a random mixture of Red-Green-Blue, or to white. Viewing the overall dis-
play, we can see that the white cells are different from the mass of the other
cells, and that they are arranged in extended patterns. However, a single cell
with only local knowledge of its neighborhood can know neither of these facts.
The upper-right display shows the Search pheromones deposited by Detectors

www.manaraa.com

Engineering Swarming Systems 367

searching for unusual cells, based on their recent experience. The high prop-
agation of these pheromones creates gradients that attract other Detectors for
confirmation. As more and more Detectors agree that the cells are indeed un-
usual, Find pheromone (lower right) accumulates to mark the location of the
unusual cells. Finally, “Classifier” agents moving diagonally across the field
sense repeated Find pheromones aligned with their movement and mark them
with Pattern pheromone to indicate an instance of a particular structure of in-
terest.

Coupling 1: Use a distributed environment. The network of data collec-
tion nodes is distributed over space. For spatio-temporal pattern recognition,
each data collection node maintains a temporal data structure to distribute agent
interactions in time as well.

Coupling 2: Use an active environment. The environment implements
the basic pheromone dynamics of Aggregation (fusion of observations from
multiple agents), Propagation (communication), and Evaporation (truth main-
tenance).

Coupling 3: Keep agents small. Both data nodes and mobile agents are
small compared with the overall system, and all interactions are local. No
single agent can solve the problem. No data node can know on its own that it
is part of a pattern being sought, nor can any individual Detector or Classifier
confirm the detection or classification without collaboration by its colleagues.

Coupling 4: Map agents to Entities, not Functions. The data nodes cor-
respond to distributed data sources in the physical domain. The Detectors and
Classifiers are not domain entities, but neither does any one of them implement
a function by itself. Detection and Classification emerge from the interactions
of multiple Detectors and Classifiers. It is perhaps best to think of the Detectors
and Classifiers as instances of hypotheses about structures in the environment,
hypotheses that are confirmed or discredited through the stigmergic interac-
tions.

Autocatalysis 1: Think Flows rather than Transitions. The fundamen-
tal information flow in this application is the pheromone loop illustrated in
Figure 17.8.

Autocatalysis 2: Boost and Bound. Search pheromone exploits positive
feedback: the more is deposited, the more Detectors come to that area and the
more they deposit Search pheromone. If unrestrained, this reinforcement could
lead to all Detectors becoming concentrated in one area, leaving other regions
unexplored. Bounds on system dynamics are provided by the programmed
death of agents and their continual rebirth at nodes distributed throughout the
area.

Autocatalysis 3: Diversify agents to keep flows going. This architecture
has three main species of agents among which information flows: data nodes,
Detectors, and Classifiers.

www.manaraa.com

368 Methodologies and Software Engineering for Agent Systems

Function 1: Generate behavioral diversity. Each function (detection and
classification) requires multiple agents. It is less clear in this case that each
agent performs multiple functions. However, agents do differ from one an-
other.

The birth location of each Detector or Classifier varies across the search
area.

A key behavioral parameter of mobile agents in this application is a
threshold that indicates how distinct a data node must be from others
that the agent has seen recently before it will deposit a pheromone. This
threshold is randomly generated.

Agents’ movements, while influenced by local pheromone gradients, al-
ways incorporate a stochastic component. The pheromone strength in
nearby nodes is used to weight a roulette wheel that determines the prob-
ability that the agent will move to each of those nodes in the next step.

Function 2: Give agents access to a fitness measure. The pheromone
fields accumulate information about outlying nodes and extended patterns that
combine the observations of many mobile agents that have followed different
individual trajectories. Thus they are locally accessible repositories of infor-
mation gathered over a much broader area, providing a local view of the global
state of the problem.

Function 3: Provide a mechanism for selecting among alternative be-
haviors. Mobile agents adjust their detection thresholds using a variation of
particle swarm optimization.

4.2 Searching and Imaging with Unmanned Air
Vehicles (Parunak and Brueckner, 2003)

The Problem. Some sensing problems (e.g., three-dimensional imaging
with synthetic aperture radar) requires the coordination of multiple sensing
platforms. Consider a swarm of unpiloted air vehicles (UAV’s) whose task is
to locate and image potential targets hiding under dense foliage. The swarm
must achieve three objectives that require different behaviors on the part of
individual UAV’s.

In searching, each UAV must effectively cover a large search space and
revisit locations regularly, maximizing detection probability based on known
characteristics of the target (e.g., visibility angle), while not exhibiting any
obvious systematic search patterns that would permit mobile targets to execute
simple avoidance strategies. A single sensor can generate enough information
to suggest the presence of a target, though it cannot image the target by itself.

When a vehicle detects a target, it announces the location of the target, and
vehicles that receive this announcement begin a coordinated imaging task. In

www.manaraa.com

Engineering Swarming Systems 369

this phase, each vehicle must collect data from varying angles along linear
trajectories (box) while minimizing both the effort (the number of required
vehicles and the distance they must move) and the data collection time (by
collecting data in parallel).

In addition, individual vehicles require periodic refueling or other mainte-
nance, and the swarm must ensure that individual vehicle requirements are met
without compromising the ability of the overall swarm to continue functioning.

Summary of Architecture. Our stigmergic approach to this problem uses
digital pheromones. An important contrast with the pheromone mechanisms in
our other two example applications is that while those applications envisioned
a network of physical nodes maintaining the pheromone field externally to the
agents, in this case each agent maintains an internal pheromone map that tiles
the search space into discrete cells. Each cell is a place in a pheromone in-
frastructure, which means that the agent that controls the vehicle may deposit
and sense digital pheromones of different flavors in that cell. In principle,
agents could propagate these maps to one another through local interaction,
thus achieving a stigmergic analog to the DAI technique of partial global plan-
ning (Durfee and Lesser, 1991), but even without generating such a “global
distributed view,” the local iconic representation has significant benefits over
more conventional robotic techniques such as occupancy maps.

During search, when a vehicle passes through the area in the search space
that is assigned to a particular cell, it deposits a unit of the visitation pheromone
into that cell in its internal map. In addition, the agent broadcasts its location,
and the agents of any other vehicle within communications reach then deposit
a visitation pheromone into their maps too. Thus, the agents mark cells that
some member of the swarm has already visited. Figure 17.11 shows a snapshot
of the visitation pheromone map of one agent in the swarm.

Local concentrations of pheromones lose strength over time, which enables
the swarm to “forget” visitations to locations that occurred a long time ago.
This knowledge management process ensures that the search process keeps
revisiting locations in case targets have moved in.

The individual agent decides its vehicle’s trajectory based on its internal
map of visitation pheromones. Once it has reached its previous goal, the agent
probabilistically selects a new location. The probability of the selection of
a particular location is inversely proportional to its distance to the vehicle’s
current location and to the strength of the visitation pheromone concentration
in the cell that covers this location. Thus the agents tend to prefer nearby
locations that have not been visited recently, and collectively explore the whole
search space.

An agent that detects a potential target dynamically forms an imaging team.
Team formation is a collaborative process in which agents bid for a role in

www.manaraa.com

370 Methodologies and Software Engineering for Agent Systems

Figure 17.11. Visitation pheromone map of one UAV in the swarm

the team depending on the match of the vehicles’ imaging capabilities with
the role’s requirements (hard constraint) as well as the current distance of the
eligible vehicles to the detected target (soft constraint).

Once roles are assigned, the team members plot the optimal trajectories for
their respective data acquisition flight and execute the imaging task. Depending
on the imaging modality (coherent vs. non-coherent), the data acquisition may
be executed individualistically or synchronized across the team. Once the task
is completed, the team disbands and the agents resume their search behavior.

A team-based approach to maintenance can accommodate UAV’s with dif-
ferent fuel consumption rates, as well as variations in the availability of main-
tenance resources at the base. UAV’s deposit a pheromone flavor that com-
municates the intensity of their current desire for maintenance, while the base
propagates a pheromone indicating its current level of load. A UAV’s deci-
sion to shift into the maintenance role is promoted by its own desire for refuel
and inhibited by the level of refueling pheromone it senses from neighboring
UAV’s and the load pheromone propagated from the base.

Figure 17.12 shows a screen shot of this system. Most of the UAV’s are
scanning the area in search mode, but four have formed a verification team to
image a suspected target, while one is one its way back to the refuel station.

Coupling 1: Use a distributed environment. The environment maintained
by each UAV is not distributed, but locality of interaction among UAV’s is
enforced by their geographical dispersion over the search area.

Coupling 2: Use an active environment. The pheromone environment
implements the usual pheromone dynamics of aggregation, propagation, and
evaporation. In addition, each UAV’s physical environment includes the other
UAV’s, whose behaviors change based on their individual experiences.

www.manaraa.com

Engineering Swarming Systems 371

Figure 17.12. Stigmergic role differentiation

Coupling 3: Keep agents small. No single UAV can do the entire task. At
least four are needed to image a target, and even more are required to maintain
a high level of search.

Coupling 4: Map agents to Entities, not Functions. The agents in this
system correspond to physical UAV’s.

Autocatalysis 1: Think Flows rather than Transitions. The main infor-
mation flows in this system are the pheromone flows of Figure 17.8, and the
communications flows between a UAV that has detected a target and the other
UAV’s whom it seeks to recruit to perform imaging.

Autocatalysis 2: Boost and Bound. A UAV’s attraction to an imaging team
is based on positive feedback, while the visitation map approach to dispersing
the UAV’s is an example of negative feedback.

Autocatalysis 3: Diversify agents to keep flows going. UAV’s are diverse
in their location. In addition, each UAV decision (the angle at which to traverse
the search area in search mode, whether to join an imaging team, whether to
return for refueling) is stochastically weighted.

Function 1: Generate behavioral diversity. Each function requires mul-
tiple agents, and each agent supports all three functions. Symmetry among
agents is broken by making decisions with weighted stochastic functions.

www.manaraa.com

372 Methodologies and Software Engineering for Agent Systems

Function 2: Give agents access to a fitness measure. Several fitness func-
tions influence agent behavior. A UAV’s proximity to another that has sensed
a target, and its sensory configuration, influence whether it joins an imaging
team. Its current fuel level and the load level of the base influence whether it
enters maintenance mode.

Function 3: Provide a mechanism for selecting among alternative be-
haviors. Agents decide whether to image based on a collective sharing of
information in a bidding process. Agents decide whether to enter maintenance
mode based on their own fuel level and the load at the base.

4.3 Dynamic Target Selection and Path
Planning (Parunak et al., 2002b)

The Problem. The current generation of UAV’s reduces the threat to human
operators, but leaves several problems unresolved.

It does not decrease the manpower requirements. Each aircraft requires a
flight crew of one to three people, so deploying large numbers of UAV’s
requires committing and coordinating many human warfighters.

The high-bandwidth needed for linking the flight crew to the aircraft
places severe constraints on available communications resources.

Fusion of information from multiple sources (satellite imagery, sensors
on UAV’s, unattended ground sensors, information from special forces
in the field) is a continuing challenge.

We want a UAV to be able to manage the details of its own mission, avoiding
dynamic threats as soon as they arise and planning its path to optimize its
movement through the battlespace.

Summary of Architecture. Like our other two examples, this applica-
tion uses digital pheromones. These pheromones live in a network of place
agents, which represent regions of the battlespace. All place agents can run
on a single computer for simulation purposes, but in actual deployment each
place agent might run on an enhanced unattended ground sensor (UGS) placed
in the battlespace by air drops or artillery and responsible for any location to
which it is closer than any other UGS. We refer to such an enhanced UGS as
a HOST (Hostility Observation and Sensing Terminal). Each place agent is a
neighbor to a limited set of other place agents, those that are responsible for
adjacent regions of space, and it exchanges local information with them. In
addition to place agents, the system includes walker agents, representing phys-
ical resources such as UAV’s. Walker agents move through the battlespace by
interacting with the place agent for each region that they visit. Place agents and

www.manaraa.com

Engineering Swarming Systems 373

walker agents are software entities, while HOST’s and UAV’s are the hardware
in which they run.

Each place agent maintains a variable corresponding to each pheromone
flavor. It augments this variable when it receives additional pheromones of the
same flavor (whether by deposit from a walker agent, from its own sensors, or
by propagation from a neighboring place agent). It also evaporates the variable
over time, and propagates pheromones of the same flavor to neighboring place
agents based on the current strength of the pheromone. Different flavors may
indicate the presence of a threat that should be avoided in the place’s region or
the presence of a target that should attract UAV’s.

The development of a path by a natural ant colony depends on the stochas-
tic interaction of many ants, some of whom wander off and die. Current
UAV’s such as the Predator and the Global Hawk are far too expensive to
use in a stochastic search mode. Instead, each UAV’s walker agent period-
ically emits ghost agents, software agents without a corresponding hardware
resource. These ghost agents are attracted by target pheromone and repelled by
threat pheromones, and lay down a path pheromone to store the results of their
explorations. Reinforcement of this path pheromone by multiple ghosts leads
to the emergence of a path that the UAV then follows. Recent advances in inex-
pensive micro-UAV’s opens up the potential for having the UAV’s themselves
swarm, as in the example discussed in section 4.

Figure 17.13 illustrates the functions of the different pheromones in this pro-
cess. On the left, intelligence about threats is translated into threat pheromones
that propagate only a short distance, since their purpose is not to attract dis-
tant ghosts, but to prevent nearby ones from wandering into danger. In the
center, intelligence about targets results in target pheromones that propagate
widely, attracting ghost agents. The higher-priority target (to the west) emits
pheromone at a higher rate, thus generating a broader field. The right-hand
display shows the path pheromones deposited by the ghost. A UAV following
the ridge of this field will be attracted to the appropriate target, while avoiding
intervening threats.

Coupling 1: Use a distributed environment. The network of HOST’s
provides an environment that is physically distributed throughout the entire
battlespace.

Coupling 2: Use an active environment. The HOST’s implement the
pheromone dynamics of aggregation, propagation, and evaporation.

Coupling 3: Keep agents small. Intelligence about the battlespace is not
concentrated in a single machine, but maintained across many HOST’s, each
responsible for a small region. The path planning is done by ghost agents,
which are small compared with the UAV’s walkers. In our experiments, each
walker has about 300 concurrent ghosts.

www.manaraa.com

374 Methodologies and Software Engineering for Agent Systems

Figure 17.13. Pheromone flavors in emergent path planning

Coupling 4: Map agents to Entities, not Functions. Agents correspond
to physical regions and resources.

Autocatalysis 1: Think Flows rather than Transitions. The basic flow is
the pheromone cycle of Figure 17.8.

Autocatalysis 2: Boost and Bound. Path emergence among the ghosts is
the result of positive feedback as they respond to path pheromones already in
place, combined with the bounding influence of pheromone evaporation over
time. The ghost population is maintained by continuous birth and programmed
death.

Autocatalysis 3: Diversify agents to keep flows going. The system uses
three main species of agents: place agents, walker agents, and ghost agents. In
addition, different resources have different walkers, different regions have dif-
ferent place agents, and ghosts diversify themselves through stochastic move-
ment. Walkers and ghosts deposit and sense pheromones in the place agents,
and thus pass information among themselves.

Function 1: Generate behavioral diversity. The system’s main function is
path planning, in which all agents participate without any of them dominating.
An important class of diversity among ghost agents is the equation by which
they translate pheromone levels that they sense in their immediate environment
into movement decisions. Originally, we hand-tuned the parameters of this
equation. We found improved performance when we allowed the parameters
to vary around the hand-tuned mean, and even more improvement when we
evolved the parameters (Sauter et al., 2002).

Function 2: Give agents access to a fitness measure. The speed with
which a ghost reaches a potential target and returns home is a good measure of
the fitness of its search parameters, so we use the lifetime remaining to a ghost
as its fitness measure.

www.manaraa.com

Engineering Swarming Systems 375

Function 3: Provide a mechanism for selecting among alternative be-
haviors. We use a variety of the genetic algorithm for adjusting the distribu-
tion of search parameters in the ghost population. An important characteristic
of our application is that this adaptation happens as the system operates, not in
an off-line planning process.

5. Conclusion and Prospect
Swarming systems have demonstrated their effectiveness as an alternative

model of cognition. This experience is leading to a growing body of engi-
neering knowledge for the deployment of such systems. They are best suited
for resource-constrained systems of discrete interacting elements that exhibit
distribution, decentralization, and dynamic change. The self-organization that
gives these systems their power requires not only interaction among the agents,
but the potential for autocatalytic loops, and some mechanism (such as syn-
thetic evolution or particle swarm optimization) for selecting appropriate be-
haviors from a wider repertoire based on some fitness function. We have de-
ployed these mechanisms successfully in a number of applications, including
distributed pattern recognition, team formation and management, dynamic tar-
get selection and path formation, resource allocation, document search and
retrieval, and ecosystem management.

This engineering perspective on swarming systems recognizes that for some
applications or problems, conventional cognitive techniques may be more ap-
propriate. Now that we understand where swarming systems are appropriate
and some of the principles that enable them, the next challenge is integrating
them with more conventional cognitive systems. We are pursuing several lines
of research in support of hybrid agent systems, including

Using swarming systems as internal “brains” for more conventional cog-
nitive systems;

Integrating fine-grained and coarse-grained agents as peers in a single
system, with fine-grained agents providing ease of implementation and
reduced need for knowledge engineering, while coarse-grained agents
provide a clearer cognitive interface to human stakeholders;

Developing mathematical methods for imputing cognitive behavior to
non-cognitive agents in support of integration with cognitive agents; and

Developing a design and specification methodology at a sufficiently ab-
stract level that it can be applied to either class of agent.

www.manaraa.com

376 Methodologies and Software Engineering for Agent Systems

Acknowledgments

This work is supported in part by DARPA under the JFACC program and
WASP seedling. The views and conclusions in this document are those of the
authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or
the US Government.

www.manaraa.com

Chapter 18

ONLINE ENGINEERING AND
OPEN COMPUTATIONAL SYSTEMS

Martin Fredriksson and Rune Gustavsson

We strongly believe that agent-oriented approaches to system development come
with a natural level of abstraction and therefore have something valuable to of-
fer. However, in doing so, any comprehensive agent-oriented methodology nec-
essarily has to be grounded in issues and solutions of relevance in contemporary
research and development areas such as Grid computing and autonomic comput-
ing – in order to realize the visions of ambient intelligence. Current efforts of
AOSE, however, mostly focus on traditional methods of software development,
provides implementations of stand-alone agent systems, or isolated experimen-
tal platforms. These efforts are, of course, worthwhile in themselves but have
clear limitations when it comes to their contribution and fulfillment of visions
such as ambient intelligence. Consequently, in this chapter we introduce the
methodological approach of online engineering. As such, this methodology has
explicitly been designed to meet what we conceive as the major challenges and
limitations in contemporary approaches of AOSE. In fact, we argue that these
limitations primarily are due to a strong focus on current practice in software
engineering, rather than on engineering of grounded open computational sys-
tems. In this respect, online engineering provides us with the models, methods,
and tools to facilitate the necessary transition from programming of abstract ma-
chines towards development of grounded physical systems, e.g., from software
engineering to engineering of open computational systems.

Abstract

1. Introduction

MAS have during the last decade been a very active area of research, devel-
opment, and experimentations (Parunak et al., 1998b; Parunak et al., 2000).
The attractiveness of these efforts is mainly grounded on the natural high-
level description power of agents in systems analysis and design. In particular,
this is also the case when it comes to describing future complex information
systems, comprised by networks of interacting agents (people and software
agents). Hitherto there has, however, mainly been a research push in efforts
to find methodologies and techniques that bring the inherent possibilities of

www.manaraa.com

378 Methodologies and Software Engineering for Agent Systems

agent approaches into an engineering discipline of future complex systems,
e.g., ambient intelligence and information ecologies (Gustavsson and Fredriks-
son, 2003). With only a few exceptions, the research push of MAS as a viable
platform for (top-down) understanding, design, development, and maintenance
of future ambient intelligence systems has hitherto almost been isolated from
industry’s (bottom-up) focus on next generation of network enabled capabili-
ties, e.g., peer-to-peer computing (Loo, 2003), Grid computing (Foster et al.,
2002) (see chapter 20), and Web services (Stafford, 2003).

Recently there are, however, some efforts to combine the ideas from MAS
research with the technological push by industry as mentioned above. Exam-
ples include agent technologies combined with (Web and Grid) services and
semantic net ideas. However, we claim that most of those efforts are rather
straightforward extensions of ideas from object-oriented software engineering,
e.g., DAML and AUML (Huget, 2002a) (see chapter 12), and AOSE, e.g.,
Gaia (see chapter 4). With respect to crucial issues of initiatives such as ambi-
ent intelligence, these approaches all come with their inherent limitations. In
parallel, there is an industrial push towards high-level system methodologies
that address issues of relevance in ambient intelligence, e.g., IBM’s effort on
autonomic computing.

In essence, we strongly believe that agent-oriented approaches to system
development come with a natural level of abstraction and therefore have some-
thing valuable to offer. However, in doing so, any comprehensive agent-based
methodology necessarily has to be grounded in issues and solutions of rele-
vance in Grid computing and autonomic computing – in order to realize the vi-
sions of ambient intelligence. Current efforts of AOSE, however, mostly focus
on traditional methods of application development, provides implementations
of stand-alone agent systems, or isolated experimental platforms. These ef-
forts are, of course, worthwhile in themselves but have clear limitations when
it comes to their contribution and fulfillment of visions such as ambient intel-
ligence.

Consequently, in this chapter we introduce the methodological approach of
online engineering. As such, this methodology has explicitly been designed
to meet what we conceive as the major challenges and limitations in contem-
porary approaches of AOSE. In fact, we argue that these limitations primarily
are due to a strong focus on current practice in software engineering, rather
than on engineering of grounded open computational systems. In this respect,
online engineering provides us with the models, methods, and tools to facili-
tate the necessary transition from programming of abstract machines towards
development of grounded physical systems, e.g., from software engineering to
engineering of open computational systems. To that end, we have to reassess
and specify what we mean by open systems, validation, the crucial difference
between formal semantics and behavior semantics, as well as tools enabling

www.manaraa.com

Online Engineering and Open Computational Systems 379

maintenance of systemic properties such as sustainability and dependability.
We will address some of these issues in the material presented in this chapter.

In section 2 we explain the main philosophy behind the approach advocated
herein. Furthermore, the basic framework and model of open computational
systems is also discussed in this section. In section 3 an outline of the actual
method applied in online engineering is introduced as well as technologies
used in experimentation with online engineering and open computational sys-
tems. In section 4 we introduce a number of system prototypes that have been
used to validate the overall methodological approach advocated herein. Finally
in section 5 we summarize issues to be addressed by means of future research
and development activities.

2. Open Computational Systems

The Turing machine is the mathematical model of computing behind meth-
ods and techniques for software design. In effect, computing is modeled in
terms of programming (implementing an algorithm on) a Turing equivalent
abstract machine. Models, methods, tools, and techniques for design, verifica-
tion and validation, as well as implementation of algorithms to be applied in
some particular problem domain are therefore key areas of computer science
and software engineering. In the early days of computing the problem domains
were mainly numeric calculations of a scientific or administrative nature. In
essence, there was (or is) no semantic problems in these areas of applicability
since the implementation of numeric calculations can be done in a syntactic
way (symbol processing with a formal semantic) and the interpretation of the
results is therefore straightforward. Furthermore, the applications were run-
ning on stand-alone machines. Therefore, if the algorithms were correct, the
implementation valid, and the hardware was working we would be done. In
essence, we could do a lot of the hard work (design) offline and focus on im-
plementation and testing (based on the algorithm design) to ensure a quality
product. Today we have advanced methods and tools supporting the software
lifecycle, e.g., object-oriented approaches related to the unified modeling lan-
guage. The information systems of tomorrow, e.g., ambient intelligence, are
however of a quite different nature. The machinery is networked, the individ-
ual components are semantically rich, and the systems’ behavior is intrinsically
dynamic – they are in every respect open.

In effect, dealing with open systems means that we cannot model all possi-
ble events of interaction between system entities (software) in beforehand (of-
fline). Hence, we cannot model or validate the actual behavior and semantics
of ongoing processes offline. Therefore, we must better understand the impli-
cations and impact of open systems, i.e., we cannot rely on offline validation
of individual components to infer a globally coherent online system behavior.

www.manaraa.com

380 Methodologies and Software Engineering for Agent Systems

Instead, we need an approach that explicitly addresses validation of systems
and their inherent structures and processes undergoing continuous evolution.
In the following material, we therefore introduce a general outline of such a
methodological framework as well as a related model, which we have denoted
Visions of Open Computational Systems (VOCS).

2.1 Framework
Above all, the notion of open computational systems addresses the issue

of programming physical systems, as opposed to programming abstract ma-
chines. To study open computational systems therefore requires us to focus on
issues relevant in observation and instrumentation of physical phenomena:

What is the primary stimulus of system dynamics?

What is the primary catalyst of system dynamics?

What is the primary isolator of system dynamics?

Investigations of open systems have been fundamental in our scientific un-
derstanding of nature. An important model of openness in natural systems con-
siders the dimension of energy flow as the primary source of evolving system
states. Such a source of evolution, or stimulus, is considered to be transferred
back and forth over the physical space between two distinct entities. In this
respect, chemical compounds and biological organisms are considered as open
but a transportation vehicle is not. As such, open computational systems are
physically grounded systems of interacting entities, but instead of considering
a flow of energy as the primary dimension of system evolution, we consider a
flow of information.

Dynamics in open computational systems is a direct result from entities that
transfer information between each other over some physical space. However,
as opposed to the primitive entities of chemical compounds and biological or-
ganisms, the event that triggers an interaction between two entities is not due
to the laws of nature. Instead, the catalyst of dynamics in open computational
systems is observation of physical phenomena. However, to make observations
of physical phenomena necessarily requires the capability of isolation.

The perhaps foremost issue of concern in investigations of dynamical sys-
tems would be the identification of a particular system’s bounding space –
isolation. However, we argue that the boundaries of systems in nature neces-
sarily must be considered from two different perspectives – physical as well
as cognitive. That is, the boundaries of some particular system are primarily
a cognitive construct that lies in the eyes of some beholder. Furthermore, as
opposed to abstract machines, physical systems can be observed by an infinite
set of beholders. In this respect, the boundaries of some system are always

www.manaraa.com

Online Engineering and Open Computational Systems 381

Figure 18.1. The model of open computational systems focuses on the transition from (im-
plicit) models of symbol manipulation towards (explicit) models of system interaction

possible to define as soon as a cognitive entity has the capability to observe the
system. Also, the identification of a system’s physical boundaries is therefore
solely dependent on a particular observer’s perception of its cognitive bound-
aries. Consequently, a physical system can only be isolated for further studies
if an observer first articulates the system’s cognitive boundaries and then use
these to identify its physical boundaries.

2.2 Model

A key aspect of open computational systems is their characteristic property
of being open and dynamic in nature. We consider such systems as situated
in physical environments where new cognitive entities can appear and disap-
pear at will as well as observe and interact with each other. Consequently, as
previously indicated, a model of open computational systems should address
three different primitives of system dynamics: information exchange (stimu-
lus), environment observation (catalyst), and cognitive bounding space (iso-
lator). However, it is equally important that such a model also addresses a
separation of concerns regarding both theory and practice of open computa-
tional systems. That is, our model should be equally applicable in scientific
investigation as in system development. Therefore, we propose a model of
open computational systems that is structured as follows (see Figure 18.1):

Environment;

Fabric;

System; and

Domain.

www.manaraa.com

382 Methodologies and Software Engineering for Agent Systems

The first layer of our model is that of the environment of evolution. From a
modeling perspective, the notion of a system’s physical environment is perhaps
the most fundamental aspect as it explicitly aims at identifying the primary
source of system evolution. That is, if validation of system behavior is our
ultimate goal, explicating a physical environment and its ramifications will
increase our understanding of potential factors that might shape the behavior
of some particular system under study. The influence of nature should not be
underestimated – physical systems are governed by laws that necessarily have
precedence over logical rules and intentions.

The second layer of our model is that of the fabric of mediation. In the
physical environment of an open computational system there exists a dynamic
network of interconnected computers. We consider the primary role of each
and every node in such a network to be that of mediation, i.e., to facilitate the
existence of system entities as well as their observation of and interaction with
the physical environment. That is, the fabric layer of our model addresses the
aforementioned primitives of stimulus and catalyst.

The third layer of our model is that of the system of interaction. This is
where we consider the actual behavior of open computational systems taking
place. It is at this layer that system entities make their environment observa-
tions which, in effect, can result in information exchange. As such, the pro-
cesses that take place at the system layer should be considered as the actual
behavior of an open computational system. The fourth layer of our model is
that of the domain of observation. Since a computational entity cannot sense a
physical environment by the same means as a human agent, our model of open
computational systems necessarily must provide for such isolation of physical
phenomena by some other means. Instead, we can provide for support of isola-
tion at the fabric level, by means of information structures at the domain layer
which are related to and accessible by entities at the system layer.

3. Online Engineering

As previously indicated, the notion of open computational systems should
above all be considered as a methodological transition from programming of
abstract machines towards programming of physical systems. At first, this
change in focus introduces us to issues of a somewhat theoretical nature. Previ-
ously, we have argued that any model of open computational systems necessar-
ily must consider their physical bounding space (environment) as well as their
cognitive bounding space (domain). In effect, these two aspects of the model
aim at system isolation. Furthermore, as a fundamental constituent of some
physical bounding space, the model considers a network of mediators (fab-
ric) that supports an ongoing process of interaction between entities (system).
Now, with such a model at hand, we can address the notion of open compu-

www.manaraa.com

Online Engineering and Open Computational Systems 383

tational systems from a practical perspective and focus on the actual problem
at hand – validation of system behavior. In doing so, we emphasize the need
for new methods, platforms, and instruments to be used in scientific investiga-
tion and development of open computational systems. Standard techniques for
(offline) software engineering must be combined with models, methods, and
tools to support online articulation, construction, observation, and instrumen-
tation of open system – embedded in physical environments. The method also
enables us to validate the proper behavior of open computational systems, i.e.,
control in processes of evolutionary system development. We have denoted
this method Online engineering.

3.1 Method
As opposed to natural systems, the constituents of an open computational

system do not come into existence as a result from the physical processes of
nature. Furthermore, they do not lend themselves to cognitive inspection as
systems in nature do. Consequently, with the ultimate goal of validating be-
havior in such systems, we have devised a method that emphasizes the previ-
ously outlined model of open computational systems. Furthermore, it should
be noted that the basic rationale of this method is that we consider information
systems of the future so complex that validation of system behavior, according
to formal specifications, will not suffice. Instead, validation of system behavior
must be performed as an iterative process where a continuously evolving sys-
tem can be trialed online according to its physical specifications. We consider
this iterative method of validation in terms of four activities (see Figure 18.2):

Articulation;

Construction;

Observation; and

Instrumentation.

According to our previously outlined model, we must first articulate the
structures present at the first three layers of an open computational system.
This activity must necessarily start with the identification of a system’s en-
vironment and corresponding ramifications. As such, the articulation of the
physical environment will then facilitate the identification of the involved fab-
ric entities, i.e., the physical artifacts that implement sensor and actuator ca-
pabilities but above all mediation capabilities. Finally, according to the appli-
cation domain that has guided us in articulating the previous layers, we must
identify the entities that supposedly should implement the system behavior we
are addressing.

www.manaraa.com

384 Methodologies and Software Engineering for Agent Systems

Figure 18.2. The method of online engineering focuses on the transition from offline methods
of articulation towards online methods of instrumentation

Once the environment, fabric, and system layers have been articulated it
is time to construct (i) the fabric entities; (ii) the system entities; and (iii)
the domain entities. However, at this point it should be noted that the initial
articulation of domain entities as such is done as part of constructing the fabric
and system entities, i.e., the actual construction of domain entities is performed
by the fabric and system entities themselves. When the construction phase of
our method is finished, all fabric and system entities are launched and their
combined behavior will emerge – readily available for observation.

Consequently, the offline activity of engineering will now go into its online
phase. By means of the constructs present at the domain layer, not only will
we be able to isolate all entities present, so will all of the involved entities.
That is, by means of observation, both human agents as well as system entities
can isolate physical phenomena in the involved environment. This capability
of observation is, as previously indicated, the fundamental catalyst of behavior
in open computational systems. However, it is also the fundamental basis of
manual as well as automated system validation and, consequently, instrumen-
tation.

At the heart of online engineering is the validation and establishment of a
stable system behavior. As such, the method therefore emphasizes an itera-
tive process where real time observation of systemic qualities is of the essence.
Furthermore, if such observed systemic qualities indicate that the behavior of
some particular system is unstable; we should be able to instrument the system
in such a way that the system can be kept online – a complete shutdown should
be considered as a complete failure (Fredriksson et al., 2003). In this respect,
if a negative system quality has been observed, the four phases of online engi-
neering is simply performed once again. However, it should be noted that in
such a second iteration of online engineering both human operators as well as
system entities can partake.

www.manaraa.com

Online Engineering and Open Computational Systems 385

Figure 18.3. The technologies of online engineering are specifically tailored towards interac-
tion with and visualization of complex phenomena which are a priori unknown.

3.2 Technology
The model of open computational systems and the method of online en-

gineering are only two out of several methodological components. In this
respect, they need to be complemented in terms of technologies that sup-
port practical experimentation and actual experience of some particular phe-
nomenon of interest. Consequently, we introduce the methodological compo-
nent of technologies (see Figure 18.3):

Platforms; and

Tools.

SOLACE. In practice, the foremost requirement of open computational sys-
tems is their need for platform support of online articulation and construction.
Furthermore, support of such mechanisms enables us to observe constructs and
behavior of open computational systems as well as to instrument such behav-
ior. In order to identify and experiment with such mechanisms, we have devel-
oped a distributed Service-Oriented Layered Architecture for Communicating
Entities (SOLACE). Contemporary tools and approaches toward support of
behavior in open computational systems need to address the pivotal notions of
physical scalability and conceptual decoupling. In effect, our platform should
therefore be considered as the supporting infrastructure that manages the prim-
itive dimensions of scalability and decoupling of open computational systems.
In principle, this platform explicitly supports the following abstraction layers,
and their inherent dynamics, of open computational systems: interaction fab-
ric, system behavior, and cognitive domains.

VIRTUE. An appropriate representation of qualitative aspects in research
and development of complex systems is of the essence. This applies to com-
plex systems in reality as well as systems of a virtual nature. In effect, when

www.manaraa.com

386 Methodologies and Software Engineering for Agent Systems

we are dealing with complex systems of a virtual nature, such as open com-
putational systems, we need the practical support in experiencing virtual phe-
nomena. Examples of such experience classes would typically correspond to
visual and aural effects, as well as interaction with network-centric constructs.
Consequently, in order to provide for such support, we have developed a Vir-
tual and Interactive Real Time Universe Engine (VIRTUE). In principle, this
platform provides for real time interaction and rendering of visual, aural, and
network phenomena of a virtual nature.

DISCERN. The requirement of platform support for online engineering
is primarily introduced by the open computational systems as such. How-
ever, when it comes to observation of behavior in these complex systems, it
is important to remember that, as human agents, we need specifically tailored
instruments and tools to do so. In practice, the activity of observation aims
at acquiring certain quantifications of some particular domain’s characteristic
qualities. By means of instruments, we can also acquire such quantifications
and use them as a basis for system modifications. However, we also need to
visualize the acquired information in a tractable manner. Consequently, we
have developed a Distributed Interaction System for Complex Entity Relation
Networks (DISCERN), which explicitly addresses dynamic and real time ob-
servation, visualization, and interaction in open computational systems.

4. Methodological Benchmarking

Let us return to the initial problem addressed in this chapter; a methodolog-
ical approach that would allow for joint ventures between academia and indus-
try in pursuit of a transition from programming of abstract machines towards
development of grounded physical systems. We have previously indicated that
an applicable approach necessarily must not consider one explicit methodolog-
ical component in isolation, but rather that the issue must be addressed by
means of a comprehensive methodology. In doing so, we have outlined the
framework and model of open computational systems as well as the method
and technology of online engineering. However, advocating the applicability
of comprehensive methodologies must necessarily also survive practical trials
– benchmarking. In an attempt to evaluate the applicability of our methodolog-
ical approach of online engineering and open computational systems, we have
therefore developed a number of benchmark prototypes. In essence, these pro-
totypes have been specifically tailored to address certain application domains
of interest to society at large but also of academic and, above all, industrial rel-
evance. It should however be noted that an in-depth discussion regarding these
benchmarks is out of scope in this particular chapter. Still, in the following
material we introduce three prototype systems that, respectively addressed the
following application domains (see Figure 18.4):

www.manaraa.com

Online Engineering and Open Computational Systems 387

Figure 18.4. The methodology of open computational systems and online engineering has
been trialed in terms relevant (scientific and industrial) issues of ambient intelligence

Network-centric warfare and coordinated behavior;

Critical infrastructures and dependable behavior; and

Distributed healthcare and normative behavior.

TWOSOME. Research and development of information systems for de-
fense and warfare have changed most dramatically during the last decade; from
weapons of mass destruction to sustainable systems of coordinated and com-
putationally empowered entities, i.e., network-centric warfare (Alberts et al.,
2001). From a holistic perspective, the involved systems are comprised by a
wide range of services: sensor and actuator systems, detection and weaponry
systems, as well as communication and support systems. In effect, the behavior
of each and every system component, as well as their synthetic behavior, has to
be dependable and trustworthy in operations under dynamic and hostile con-
ditions, and perhaps even more challenging; the notion of system lifespan has
to be considered in terms of decades. Consequently, at the core of a prototype
system for Trustworthy and Sustainable Operations in Marine Environments
(TWOSOME) is the development of a MAS, where interacting and coordi-
nated entities and services temporarily come together in a physical setting; in
order to perform a particular assignment under dynamic and hostile conditions.
In essence, the system developed is subject to a validation of qualities such
as information fusion, coordination, and adaptation. In this particular system
there exist two interrelated application domains and, consequently, missions
involved: creating and removing physical threats at some particular environ-
ment location. In effect, the various agents involved are positioned in a physi-
cal environment and therefore, by means of their autonomous and cooperative
behavior, create an evolving state of affairs that is difficult to handle by means
of a single coordination mechanism. In essence, an attacker is positioned in the
environment and set to detonate whenever the presence of a particular vessel

www.manaraa.com

388 Methodologies and Software Engineering for Agent Systems

is identified in the surroundings. Correspondingly, three coordinated defend-
ers are assigned the role of sweeping different environment locations and, in
effect, aim at removing potential attackers. However, due to potential degra-
dations in functionality, the defenders must continuously reassess their current
situation and take actions accordingly (Fredriksson and Gustavsson, 2003).

SIGNIT. Important issues related to Europe’s future energy systems in-
volve safety critical infrastructures and environmental concerns. In address-
ing such concerns, it is important that an accessible scenario is identified and
constructed at an early stage, i.e., in order to provide for the basic setting of
future experimentation and empirical investigations in the domain of critical in-
frastructures. Therefore, in order to account for such an experimental setting,
we have developed a prototype of Sustainable Infrastructures and Geospatial
Networks of Information Technology (SIGNIT). The prototype addresses the
physical environment of Öland, at the south-east coast of Sweden, and two
different infrastructures involved: information and energy networks. At each
node in these geospatial networks, certain information is accessible by means
of localized services, which in turn can be used in online engineering and ex-
perimentation with sustainable behavior of critical infrastructures. Services
populating the information and energy networks, e.g., production, consump-
tion, and load balancing services, are in focus in this prototype system.

SHINE. Treatment of elderly people and citizens in need of professional
care is one of the most important aspects of any society to consider, i.e., proac-
tive support for citizens’ quality of life. However, since the involved organi-
zations to a great extent are of a centralized nature, patients need to transport
themselves to the hospital in order to receive treatment. If the organizations
could be decentralized and still reach out to patients in need of treatment,
this would be of great benefit for all of the involved parties. Consequently,
we therefore focus on the needs of mobile home support teams in distributed
health care organizations, by means of technologies that enable mobile access
and peer-to-peer connectivity. Consequently, we developed a system for Sus-
taining Health and Interaction in Networked Environments (SHINE), where
interacting and coordinated entities and services temporarily come together in
a physical setting; in order to perform sustainable and effective behavior under
dynamic and life-dependent conditions. In essence, the system developed is
subject to a validation of qualities such as information fusion, coordination,
and normative constraints.

5. Concluding Remarks and Future Work

Above all, the notion of online engineering addresses the issue of program-
ming reliable systems, as opposed to programming abstract machines. As such,

www.manaraa.com

Online Engineering and Open Computational Systems 389

the approach of online engineering requires a comprehensive methodology that
embraces the concerns of both science and engineering. That is, a new set of
models must be developed that emphasizes certain key concepts and their in-
terdependencies – aiming at scientific principles of reliable behavior in open
computational systems. In this respect, engineering must develop a new set of
platforms and instruments to allow for the construction of reliable systems as
well as scientific experimentation with open computational systems.

Coming back to the main issue of online engineering, it is important that
the new models of behavior in such systems are identified and trialed as a joint
venture between the science and engineering communities. That is, the models
of scientific investigation in the area of agent systems must be equally applica-
ble in systems engineering and vice versa. In this chapter, we have therefore
presented a first outline of a comprehensive methodology that encompasses
both theoretical aspects, i.e., framework and model of open computational sys-
tems, as well as practical concerns, i.e., method and technology of online engi-
neering. However, advocating a comprehensive methodology is a quite futile
task if the methodology as such is not trialed in terms of actual applicability.
Therefore, we have introduced a number of relevant application areas of agent
systems, i.e., network-centric warfare, critical infrastructures, and distributed
healthcare. These areas of applicability have been instrumental in our develop-
ment of several system prototypes which, in effect, have been used to identify
issues and opportunities of our methodological approach.

With respect to the areas of applicability for agent systems, in combination
with the system prototypes developed, we have identified certain concrete is-
sues that have to be addressed by means of future research and development
activities. In principle, these activities are all related to the overall goal of real-
izing the visions of ambient intelligence, but should all be considered from the
perspective of a methodological approach of equal relevance to the scientific
as well as industrial communities.

The first issue identified in our methodological benchmarking is related to
the notion of a framework. As such, the framework should provide the (scien-
tific and engineering) practitioner with a clear and unambiguous world view,
i.e., a grounded philosophy that actually encompasses some particular phe-
nomena under study. In our case, the major insight has been the need for a
framework that explicitly addresses the transition from programming of ab-
stract machines towards sustainability of physical systems.

The second issue identified involves the notion of models. At the very core
of any model is the overall goal of isolating a particular phenomenon, or class
of phenomena, and to represent its essential nature in a clear and abstract man-
ner. In the case of models for open computational systems, our major insight
is strictly related to the need for a model that addresses the transition from

www.manaraa.com

390 Methodologies and Software Engineering for Agent Systems

(implicit) models of symbol manipulation towards (explicit) models of system
interaction.

The third issue identified in our methodological benchmarking is related to
the notion of a method. As previously indicated, ambient intelligence and open
computational systems presupposes the emergence of such complex behaviors
that control cannot be fully designed and programmed in an offline manner, but
rather that this has to be achieved in an evolutionary fashion. In principle, this
means that methods of science and engineering have to consider a transition
from offline methods of articulation towards online methods of instrumenta-
tion.

The fourth issue identified involves the notion of technology. As is the case
with all of natural science, computer science and software engineering is ut-
terly dependant on support from specifically tailored technologies. However,
technologies must necessarily be considered as the means to fulfill some par-
ticular needs. In our case, dealing with the complexity of ambient intelligence
and open computational systems, we need to explicate the need for technolo-
gies that are specifically tailored towards interaction with and visualization of
complex phenomena which are a priori unknown.

Acknowledgements
The authors would like to acknowledge the substantial development efforts

provided by personnel at Societies Of Computation LABoratory (SOCLAB).
Furthermore, it should be acknowledged that research and development of
the various technologies and systems outlined herein was funded by the fol-
lowing research projects: Service-Oriented Trustworthy Distributed Systems
(SOTDS), distributed intelligence in CRitical Infrastructures for Sustainable
Power (CRISP), and SUstainable Mobile Services with healthcare applications
(SUMS).

www.manaraa.com

VI

EMERGING TRENDS AND PERSPECTIVES

www.manaraa.com

Introduction

The potentials of agent-based computing in several application areas have
been already outlined in the introductory chapters of this book, as well as here
and there in various chapters of it. The key message is that agent-based com-
puting, as a novel software engineering paradigm, promotes the design and de-
velopment of more robust and adaptive applications than traditional software
engineering approaches.

The generality of the above consideration is testified by the fact that agent-
based software development has already been successfully applied in areas
such as Web-based information systems, workflow systems, and manufac-
turing systems. That is, all those software systems that were traditionally
designed and developed using traditional techniques – i.e., object-based and
component-based – can provably take advantage of the agent-based approach
and of the techniques and methodologies of agent-oriented software engineer-
ing.

However, the ICT scenario is continuously changing, and brand novel ap-
plication areas are emerging, raising very complex issues to be faced by soft-
ware engineers and developers. For these novel areas, the problem of verify-
ing whether agent-based computing will be a better approach than traditional
approach one will not apply. Simply, the general understanding is that agent-
based computing will be the only suitable approach to face the intrinsic com-
plexities of these novel applications areas.

The emerging application areas we are referring to are global computing and
pervasive computing. The former, global computing, include applications that
will execute at a world-wide scale, and will be made up of a large amount of
interacting processes/agents, distributed in the Internet and accessing data and
resources from wherever in it. The latter, pervasive computing, considers the
presence of wearable computers and of an increasing number of computing de-
vices embedded in our physical environments and artifacts. This pervasiveness
of computing devices (capable of interacting with each other in mobile wire-

www.manaraa.com

394 Methodologies and Software Engineering for Agent Systems

less networks) will provide for enriching our capabilities of interacting with
the environment and, viceversa, will make it possible for our environments to
become interactive. In other words: our capabilities to compute and access
distributed computational resources will become ubiquitous; and the objects
and materials that compose our home and working environments will become
somewhat smart, intelligent.

The first two chapters of this part focus on two specific aspects of the global
computing and of the pervasive computing scenarios, namely the Grid and
ubiquitous computing (the scenarios of computational economies and smart
materials have already been somewhat discussed in chapters 10 and 15, respec-
tively), and will discuss the role that agent-based computing and agent-based
software engineering techniques will play in them. In particular:

Chapter 19, “Agents for Ubiquitous Computing” by Zakaria Maamar,
Walter Binder, and Boualem Benatallah, discusses what can be the value
added by software agents to ubiquitous computing, e.g., as a way to
help coordinate the large amount of mobile computing devices that will
populate ubiquitous computing environments. In addition, the chapter
discusses what specific agent-oriented software engineering approaches
are needed in the development of ubiquitous computing applications.

Chapter 20, “Agents and the Grid” by Luc Moreau, Michael Luck, Si-
mon Miles, Juri Papay, Keith Decker, Terry Payne, argues that Grid ap-
plications very strongly suggest the adoption of agent-based computing,
and review the key uses of agents in Grid applications. Following, the
chapters focuses on the specific issue of service discovery in Grids, that
the authors identify as a prime candidate for the use of agent technology
in Grid applications.

In addition, this part includes the chapter “Roadmap of Agent-Oriented
Software Engineering” by Zahia Guessoum, Massimo Cossentino, Juan Pavon.
The goal of this final chapter is to summarize the key achievements so far in
the area of agent-oriented software engineering, and to use this summary to
identify further promising research directions for the near and the long term,
so as to sketch a sort of roadmap for the researches in the area. The sub-title of
the chapter emphasizes the fact that the chapter itself is the result of a collec-
tive work from European researches having participated to the activities of the
AgentLink SIG on Methodologies and Software Engineering for Agent Sys-
tems. Consequently, what is expressed in the book can, to some extent, reflect
the broader perspective acquired during the SIG discussions.

www.manaraa.com

Chapter 19

AGENTS FOR UBIQUITOUS COMPUTING

Zakaria Maamar, Walter Binder and Boualem Benatallah

Nowadays, advances in location sensors, wireless communications, and global
networking are advancing and deploying the ubiquitous computing vision. Ubiq-
uitous computing aims at making computer use invisible to users. Besides the
central role that hardware infrastructure plays in the expansion and penetration
of ubiquitous computing, other issues still need to be tackled. In this chapter, we
discuss the issue of the value-added of software agents to ubiquitous computing.
Indeed, software agents have a role to play such as, for example in coordinating
the large number of computing devices, whether fixed or mobile, that will popu-
late ubiquitous computing environments. Most importantly, agents in ubiquitous
computing need to be context aware so they can adjust their behavior to different
situations. Therefore, new agents engineering approaches are needed.

Abstract

1. Introduction
The development of new computing and communication devices and the

increased connectivity between these devices thanks to wired and wireless net-
works are enabling various opportunities for people to perform their operations
anywhere and anytime. Samples of devices are multiple and include just cit-
ing a few desktops, cell-phones, and personal digital assistants. Because of
the current trend in the acceptance rate of the devices whether fixed or mobile
by the user community, it is expected that these devices will become so perva-
sive that most users will take them for granted. Generally known as Ubiquitous
Computing (UC), this vision is the object of several research efforts going back
to the statement of M. Weiser about UC (Weiser, 1991). The vision of UC is
to push computational services out of conventional desktop interfaces into en-
vironments characterized by transparent forms of interactivity (Abowd, 1999).
Major hardware developments as well as advances in location sensors, wire-
less communications, and global networking are advancing and implementing
Weiser’s vision towards an UC world (Saha and Mukherjee, 2003).

www.manaraa.com

396 Methodologies and Software Engineering for Agent Systems

Despite the growing interest in UC, there is still some progress to achieve
before UC shifts from the investigation mode to the commercial mode. The
support technology, however, is improving at an impressive pace. Most of the
research and development efforts are aiming at improving the devices them-
selves and the technologies these devices will use to communicate. With regard
to research on devices, the focus is being on offering further functionalities to
users, while reducing size, cost, and power requirements. Since 2001 Java-
enabled phones are available on the market; it is now possible to download
Java applets form servers to be run on such phones. Accessible, personal, and
location-aware are among the main advantages that wireless devices over fixed
devices provision (Yunos et al., 2003). With regard to research on commu-
nication, the focus is being on improving bandwidth and throughput and on
developing new coverage and recovery techniques. At present, the main use
of mobile devices is still voice-oriented, but several indicators show that this is
changing. Third generation networks (e.g., GPRS: General Packet Radio Ser-
vice1, and UMTS: Universal Mobile Telecommunication System2) and recent
development of communication and presentation protocols (e.g., XML: eXten-
sible Markup Language, WAP: Wireless Application Protocol) are being com-
bined to give users a high-quality experience of data-centric services (Ekudden
et al., 2001; Ralph and Shephard, 2001; Wieland, 2003).

Besides the central role that hardware infrastructure plays in the expansion
and penetration of UC, other issues still need to be tackled to better assist de-
velopers of UC applications and potential users as well. Developers are put
on the front line of satisfying the promise of businesses and service providers
of delivering Internet content to mobile devices. Indeed, since an application
for mobile users has different requirements this definitely calls for new tech-
niques to identify and specify these requirements. In addition, because such an
application relies on wireless communication channels, the features of these
channels have to be emphasized during the design phase. Therefore, new soft-
ware engineering techniques enhanced with high-level abstraction concepts are
required to support developers. With regard to users, it is expected that they
will be frequently engaged in complex operations such as searching the net for
better business opportunities. Therefore, their association with intelligent com-
ponents, to act as proxies, is deemed appropriate. Software agents denote these
components (Jennings et al., 1998) and can be gathered into groups of agents

1GPRS is a new non-voice value added service that allows information to be sent and received across
a mobile telephone network. It supplements today’s Circuit Switched Data and Short Message Service.
GPRS has several unique features such as speed and immediacy.
2UMTS is a 3G mobile system being developed by ETSITM within the International Telecommunications
Union’s IMT-2000 framework. UMTS is an European system which is attempting to combine cellular,
cordless, low-end wireless, local area network, private mobile radio, and paging system. It will provide data
speeds of up to 2Mbps, making portable videophones a reality.

www.manaraa.com

Agents for Ubiquitous Computing 397

denoted by MAS. UC environments of the near future will be populated by a
large number of computing devices, spread across the network, and often in-
visible. These devices need to be coordinated for better interactions. Devices,
whether carried on by people or embedded into objects, e.g., homes (Edwards
and Grinter, 2001), restaurants (Stanford, 2003), will constitute a global net-
working infrastructure with a new level of openness and dynamics. These in-
teractions raise many new issues that draw on and challenge the field of agents.

One of the main objectives of UC is that devices should provide smart sup-
port to users without forcing them to adjust their behavior. Therefore, the
access to devices should not be complex despite the large number of func-
tionalities that could be made available. Unfortunately, the opposite often
occurs as devices are too complex and people just use the very basic func-
tionalities (Schmidt and Beigl, 1998). An assistant that hides the complexity
of all these operations is necessary. Schmidt and Beigl call this assistant an
accompanying personal device that eases the interactions with and use of de-
vices (Schmidt and Beigl, 1998). In this chapter, agents correspond to such
assistants.

The rest of this chapter is organized as follows. Section 2 provides few
examples on the widespread of UC in people’s daily-life. Section 3 provides
details on the basic concepts that are considered in this chapter including soft-
ware agents, mobile computing, pervasive computing, and finally ubiquitous
computing. Section 4 presents the core components of an UC environment.
Section 5 presents the value-added of agents to UC and explains the ways
agents can contribute to the development and deployment of UC applications.
Finally, section 6 concludes the chapter.

2. Examples on Ubiquitous Computing

UC is attracting the attention of several people from academia and industry
as the various projects illustrate (Saha and Mukherjee, 2003):

Aura (Carnegie Mellon University): the objective is to provide each user
with an invisible halo of computing and information services that per-
sists regardless of location.

Endeavour (The University of California at Berkeley): the objective is
to enhance human understanding through the use of information tech-
nology, by making it dramatically more convenient for people to interact
with information, devices, and other people.

Oxygen (MIT): the objective is to bring abundant computation and com-
munication, as pervasive and free as air, naturally into people’s lives.

Portolano (The University of Washington): the objective is to create a
testbed for investigation into the emerging field of invisible computing

www.manaraa.com

398 Methodologies and Software Engineering for Agent Systems

that describes the coming age of ubiquitous task-specific computing de-
vices.

The Active Badge Location System (Olivetti Research).

One of the expected outcomes of UC is to ease the life of people. Various
examples have been given such as (i) a refrigerator that knows that milk is run-
ning out and thus, needs to be reordered by contacting the supplier; or (ii) a
frozen food that transmits the correct duration and power settings to the mi-
crowave. These two basic examples identify the key elements that should em-
body any UC application namely awareness, access, and responsiveness (Fano
and Gershman, 2002). For instance, the refrigerator has to be aware of the
quantity of milk that is left before it takes any action. Based on that quantity,
the refrigerator may access a yellow-pages system to identify which grocery to
contact using certain criteria such as proximity or free-delivery. The refrigera-
tor may also have to be responsive to the outcomes of its interactions with the
grocery.

Personal Device Assistants (PDAs) and cell-phones are the more “visible”
types of devices that constitute most of current UC environments. However,
there are many other types of devices that surround people without these ones
being aware of their presence (i.e., such devices are unobserved). Today most
household appliances have embedded microprocessors. Each one of these
small devices offers a specific service to users. Interesting and challenging
are the situations when devices will be able to collaborate with each other to
build up more complex services.

3. Background
Software Agents. An agent is a piece of software that acts autonomously to
perform tasks on users’ behalf (Jennings et al., 1998). The design of many
agents is based on the approach that the user only needs to specify high-level
goals instead of issuing explicit instructions, leaving the how and when deci-
sions to the agent. An agent exhibits a number of features that make it differ-
ent from other traditional components including autonomy, goal-orientation,
collaboration, flexibility, self-starting, temporal continuity, character, commu-
nication, adaptation, and mobility. It is mentioned that not all these character-
istics have to be present in an agent. For illustration purposes, certain features
are explained below.

Autonomous: an agent is able to take initiatives and exercise a non-
trivial degree of control over its actions.

Collaborative: an agent does not blindly obey commands, but can mod-
ify requests, ask for clarifications, or even refuse to satisfy certain re-
quests.

www.manaraa.com

Agents for Ubiquitous Computing 399

Flexible: an agent’s actions are not scripted; it is able to dynamically
choose which actions to invoke and in what order, in response to the
status of the external environment.

Mobile: an agent transports itself from one host to another across multi-
ple computing platforms where it resumes its operation.

(Chen and Finin, 2002) note that many of the existing research projects on
agents assume that agents will conduct their activities in a controllable envi-
ronment. In this environment, agents can have a complete knowledge and un-
limited resources. However, the authors questioned whether these assumptions
are still valid in UC environments that are open, dynamic, and constituted of
several interdependent but autonomous components. This definitely calls for
new agent-based engineering approaches for UC environments.

Mobile Computing. Mobile computing refers to systems in which compu-
tational components (either hardware or software) change their locations in a
physical environment (Huang et al., 1999). (Bellavista et al., 2001) decom-
pose mobile computing into user, terminal, and access mobility. User mobility
requires providing users with a uniform view of their preferred working envi-
ronment regardless of their current location. Terminal mobility allows devices
to transparently move and connect to different points of attachment. Finally,
access mobility entails the dynamic adaptation of the resources and services to
meet the requirements of mobile users and terminals.

Mobile computing is also seen as a way of increasing the capability of users
to physically carry on computing devices with them while moving (Lyytinen
and Yoo, 2002). As a result, devices are made available to users anywhere
and anytime. A major limitation of mobile computing is the no-adjustment of
the computing model while users on the move. This is mainly due to the un-
awareness of the context that underlies a user business-environment (Brézillon,
2003). To handle this limitation, users have to control and configure the appli-
cations by themselves – an operation most users do not want to be responsible
for.

Pervasive Computing. It is another perspective that makes computers invis-
ible. The core idea is to allow a dynamic deployment of a computing model
after assessing the environment (Lyytinen and Yoo, 2002). Pervasive comput-
ing goes beyond the realm of personal devices; it is almost any device (cloths,
tools, appliances, cars, etc.) embedded with chips can connect an infinite net-
work of collaborative devices. Four aspects motivate the widespread of perva-
sive computing (Ark and Selker, 1999): computing is extended throughout the
environment, users are mobile, information appliances are becoming increas-
ingly available, and communication is made easier between persons, between

www.manaraa.com

400 Methodologies and Software Engineering for Agent Systems

things, and between both persons and things. (Saha and Mukherjee, 2003)
claim that pervasive computing is a superset of mobile computing. In addition
to mobility, pervasive systems call for interoperability, scalability, adaptability,
and invisibility support to ensure that users have a seamless access to comput-
ing whenever they need it.

Ubiquitous Computing. Weiser defines UC as the method of enhancing
computer use by making many computers available throughout the physical en-
vironment, but making them effectively invisible to the user (Weiser, 1993). UC
is considered as an integration effort of mobile computing and pervasive com-
puting (Lyytinen and Yoo, 2002). Indeed, any computing device, while mov-
ing with persons, can incrementally build dynamic models of their environ-
ment and consequently, configure and adjust in response its services. Research
on UC includes various aspects such as technology (small devices, wireless
communication, location sensing, etc.), psychology (privacy concerns, atten-
tion focus, multi-person interaction, etc.), and design (direct interaction, work
patterns, etc.).

Borriello discusses a list of challenges that need to be tackled before UC
applications become widely accepted (Borriello, 2002). These challenges are
related to the characteristics of mobile devices (e.g., small size, low storage
capacity, poor computing performance) and wireless networks (e.g., low band-
width, low throughput, poor reliability). They are summarized as follows:

Heterogeneous networks: multiple types of networks (i.e., wired or wire-
less) and communication protocols to manage networks currently exist.
That has been foreseeable since networks and protocols are applied to
numerous cases with different requirements and expectations. There-
fore, devices will not all have to communicate using the same technique.
To handle such heterogeneity, transport protocols that transfer packets
from one band to another are needed. In addition, protocols that es-
tablish and maintain communications particularly for wireless networks
are important. Besides that, the lack of processing performance of most
mobile devices influences the selection of the communication protocols.
It is known that devices will try to shut down as often as possible for
various reasons such as battery use reduction.

Geographic vs. network topology: it is obvious that a connecting path
between devices differs when seen from a virtual or physical perspective.
A focus on the geographic proximity rather than on the network topology
in UC is preferred. Nearby devices should communicate as directly as
possible while maintaining their respective security. Moreover, devices
have to know with whom they communicate and how the data exchanged
is made secure.

www.manaraa.com

Agents for Ubiquitous Computing 401

Short-lived connectivity: because mobile devices depend on batteries
for their operation, they will always try to limit their power consumption
as much as possible. However, a major aspect of any UC environment
is communication, which means a power-consumption increase. There-
fore, tradeoffs between power consumption and connectivity will be at
the core of many works on UC.

Evolution of long-lived systems: as more devices will be everywhere
deployed, it is unlikely that these devices will be all simultaneously up-
graded. Support systems that keep the operation continuity are impor-
tant. Moreover, these systems have to deal with the heterogeneity and
dynamic reallocation of bandwidth. The future will bring many more
types of devices dynamically relocated and communicating at shorter
range.

4. Dimensions of Ubiquitous Computing

Ubiquitous computing is a new way of deploying devices and offering ser-
vices independently of location and time constraints. Indeed, any piece of
information on the Internet will be made available to users anywhere and any-
time. However, because of the heterogeneity and distribution that characterize
the current context, it is expected that users will face several obstacles. To
this end, support mechanisms are needed at the following levels (Schmidt and
Beigl, 1998):

Since users will be given the opportunity to instantly exchange informa-
tion and services with other unknown users, identification and interac-
tion mechanisms are required.

Since users will be localized anytime and anywhere, privacy and se-
curity aspects have to be dealt with carefully. Both aspects affect the
acceptance rate of UC by the community.

Since users will be given the possibility to use different types of devices,
adjusting the devices to the type of users (e.g., novice, expert) is impor-
tant3.

1

2

3

3The 3W Composite Capabilities/Preferences Profiles (CC/PP) working group aims at developing standards
that will enable providers of services to get the capabilities of devices through their profile (Ralph and
Shephard, 2001). Examples of such capabilities are memory capacity, storage capacity, and processing
speed. CC/PP is an XML based scripting language that is used for describing the capabilities of a device
using RDF. The CC/PP profiles of devices may be available on the devices or on a location in the network,
whose URL is known to the device. For some users, revealing even the basic device information contained
in a typical CC/PP profile may be a cause for concern.

www.manaraa.com

User Assistance Dimension. A large variety of devices are made available.
It is unlikely that users will be familiar with them all. Samples of devices in-
clude (Saha and Mukherjee, 2003): traditional input (e.g., mice, keyboards)
and output devices (e.g., speakers, light-emitting diodes); wireless devices
(e.g., pagers, PDAs, palmtops); and smart sensors (e.g., intelligent appliances,
embedded sensors). This diversity is a tremendous burden on users who have
to be trained in each device. This should not be the case. Devices should
become more responsive and friendly by personalizing their functionalities to
users (Nakajima et al., 2003). Therefore, devices should be given the capacity
to sense the environment, which will make their functionalities adaptable to
the current situation. Adaptability is a key approach to deal with the variety of
computing environments and changing settings (Popovici et al., 2003). Indeed,
new modes of interaction have to emerge so user movement and proximity of
devices for instance can be considered (Esler et al., 1999). The main challenge
will be to maintain consistency across devices while adjusting and managing
the multiple interfaces of these devices to the current context of use.

To illustrate the importance of assisting users and performing their opera-
tions in a transparent way, (Maamar et al., 2004) have conducted some research
on hybrid environments that consist of a mixture of fixed and mobile devices.
The research has focused on the identification of the devices on which ser-
vices triggered by users will be performed. The identification was based on
the computing capabilities of devices vs. the computing requirements of ser-
vices. Different types of agents have been devised including user-agents to
provide assistance to users and resource-agents to identify devices (i.e., fixed
or mobile) seen as computing platforms.

Privacy and Security Dimension. Privacy and security are, obviously, inti-
mately related. Privacy is an integral part of users, whereas security is an inte-
gral part of the resources and services users will be authorized to exploit. Un-
like security, which deals with keeping information and resources away from
unauthorized uses, privacy4 gives people the right to control their personal in-
formation, including when, how, and to what extent information about them
could be communicated to others (Kortuem and Segall, 2003).

Privacy is a major concern for users of UC applications (Abowd, 1999;
Satyanarayanan, 2001). Users have to be aware that their steps and actions
can be monitored and stored for possible use in the future (may be against
them). To overcome this concern, potential users have to trust the system in

4In the objective of supporting au automatic assessment of the privacy, P3P standing for Platform for Privacy
Preferences is an initiative under the auspices of the World Wide Web Consortium (W3C). The aim of the
initiative is to establish machine-readable standards that can be automatically compared to the individual
privacy preferences of a user. Using a trusted personal device, sensitive information can be exchanged with
the environment only if the recipient matches the privacy preferences of the sender.

402 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

use (Schmidt and Beigl, 1998). It is necessary to provide privacy mechanisms
that are enough familiar to users so they can easily understand and accept. A
user should have the authority to decide which information to share and which
to keep secret.

Security in UC applications is differently handheld from standard applica-
tions (not-ubiquitous) that are usually deployed on wired communication chan-
nels and powerful computing resources (Kagal et al., 2001). For instance, log-
ging into computers and domains are no longer valid because UC environments
are open and dynamic. This increases security risks and problems with access
control as services and resources are being made available to anyone who has
a mobile device. In addition, the limitations of mobile devices in terms of pro-
cessing, memory, and bandwidth capacity are still hindering the deployment of
security mechanisms on these devices.

Context Awareness Dimension. The integration of the environment and of
the context surrounding users into applications is a good indication to the ac-
ceptability and usability of these applications by users (Brézillon, 2003). De-
vices should sense what the user does need next, what he will probably per-
form, and what actions can be taken to ease his tasks and anticipate his needs.
The computing system should be aware of the user’s context not only to re-
spond in an appropriate manner with respect to the user’s cognitive and social
state but also to anticipate his needs (Siewiorek, 2002).

(Schmidt and Beigl, 1998) claim that a context is more than the current lo-
cation of the user. The context should integrate the people around the user, the
situation (e.g., in a meeting, making a phone call), the environment (e.g., loca-
tion, temperature, time), and the feeling (e.g., pulse, body temperature). Extra
information about the context can make a computing device act and react more
promptly and efficiently. Three examples of first-generation context-aware ap-
plications are discussed in (Siewiorek, 2002): the notification application that
alerts users if they are passing within a certain spatial distance to a task on their
to-do list (e.g., getting a fax from the business center); the meeting reminder
application that alerts users if they are moving away from the site of a meet-
ing whose location has been changed; and finally the activity recommendation
application that recommends possible activities or meetings user might like to
attend based on their interests.

To enhance systems with context-aware capabilities, many issues have to be
addressed. (Satyanarayanan, 2001) has listed several of them, just to cite a few
how is context internally represented? How is this information combined with
system and application state? Where is context stored? Does context reside
locally, in the network, or both? How frequently does context information have
to be consulted? And what is the overhead of taking context into account?

Agents for Ubiquitous Computing 403

www.manaraa.com

Agent-based Approaches. (Dey, 2001) argue that one of the major prob-
lems in UC applications is the lack of standards that permit their evaluation.
We believe that the same argument applies to the design, development, deploy-
ment, and maintenance of UC applications. To deal with this lack and provide
an appropriate support to developers, there is a trend of considering the avail-
able approaches and techniques of standard applications (e.g., service discov-
ery protocols such as SLP – Service Location Protocol, and UDDI – Universal
Description, Discovery, and Integration) and adapt them to the UC case. Un-
fortunately, this adaptation does not seem to be straightforward because of the
challenges of UC (Dey, 2001): greater physical space over which the system
operates; greater availability of the system over time; and larger number of
people the system is supporting interactions with and between. Therefore, in-
stead of adapting approaches and techniques to overcome these challenges, it
is important to explore and provide from an agent perspective (because of the
focus of the chapter) the support to design and develop UC applications.

To illustrate this lack of standards in UC, this example is provisioned. Pre-
dictability is one of the evaluation metrics that can be used (Dey, 2001). This
metric presents difficulties when applied to UC applications. Indeed, an ap-
plication is predictable if the user can determine what the effect/impact of a
future input/action would be. This is not simple in UC applications because
of their high degree of unpredictability. UC applications have to adapt their
behavior according to the context of use. However, a user cannot be aware of
all the effects of the actions he performs. These effects keep changing from
one context to another.

With regard to the fields of agents and MAS, it is largely accepted that most
of the achievements whether at the levels of communication languages, coor-
dination protocols, negotiation strategies, or design methodologies (e.g., Gaia,
Tropos, ADELFE, all discussed in this book) have been specifically devised for

404 Methodologies and Software Engineering for Agent Systems

(Kouadri Mostéfaoui, 2003) points out that location is the parameter mostly-
used in context-aware applications. She argues that this is not enough for ex-
ample in service discovery and composition process. Indeed, new types of con-
text parameters are deemed appropriate including user context (e.g., role, iden-
tity, location, preferences, social situation, permissions profile), computing
context (e.g., network connectivity, nearby resources), time context (e.g., day-
time, week, month, season), physical context (e.g., weather forecast, humidity,
temperature) and last but not least context history that records details on other
contexts for future use. Applications can make use of not just the current con-
text, but also past contexts to adapt their behavior for better interactions with
users.

5. Contributions of Agents to Ubiquitous Computing

www.manaraa.com

Agents for Ubiquitous Computing 405

standard applications (not-ubiquitous). There is an urgent need to put forward
new software engineering approaches and design techniques for agent-based
UC applications.

(Esler et al., 1999) mention that the technology and protocols used for im-
plementing agents are becoming better understood. The next step should be
oriented towards mobile applications with widely distributed data sources and
intermittent connectivity. Initially, the use of agents in building UC applica-
tions has to satisfy certain requirements that are (Nakajima et al., 2003):

Extreme portability: since the devices that contribute to an UC applica-
tion are extremely heterogeneous, the code to develop agents in charge
of these devices should be portable particularly when it comes to making
agents roam the network of devices. It is unlikely that a single program-
ming language or operating system will be available for all devices in
the near future.

Uniform behavior: since the diversity of the places in which a user can
be (e.g., mall, airport, classroom), agents should enable a uniform way
of accessibility to the services regularly-used through an intelligent ad-
justment. For instance, different user interfaces, each appropriate to a
specific context, should be able to handle the same set of services.

High-level abstract concepts: since the development of UC applications
is complex, concepts and approaches that ease this development are
needed. Agents as a design paradigm have already shown their bene-
fits in various application domains (Moulin and Chaib-draa, 1996).

Survival systems: since UC applications will be important in people’s
daily life, operation continuity and survivability have to be maintained
despite security attacks or system crashes. Agents that monitor the nor-
mal progress of operations will have to make decisions in case corrective
actions are required.

Several concepts and approaches have been developed for standard applica-
tions in general and agent-based applications in particular. However, we stated
that their straightforward use is not granted in the context of UC applications.
Chen and Finin back this statement; they listed the obstacles that need to be
considered in case of, for example, teamwork principles would have to be ap-
plied to UC (Chen and Finin, 2002). These obstacles are decomposed into three
areas. First, with regard to the perception area, the ability to perceive the envi-
ronment in which an agent resides is of importance so the agent can recognize
opportunities and avoid conflicts. However, in an UC environment agents have
a limited perception due to physical obstacles or computing limitations that
could impede their perception of work. Second with regard to the planning

www.manaraa.com

406 Methodologies and Software Engineering for Agent Systems

area, to perform some planning agents need to be capable of constantly acquir-
ing comprehensive knowledge about the state of the world, which includes the
state of the team goal, the commitments of individual team members, and the
plans that the individual agents have to follow. However, because of the lack
of resources on certain computing devices, the difficulty of exchanging plans,
and even the lack of a common plan representation, planning can be hindered.
Finally, with regard to the mobility of devices area, because computing devices
are constantly moving in and out of a network environment, it is important to
know their exact location and duration of presence in the environment to ensure
the existence of long-lasting collaborations. Ubiquitous agents will enter and
leave a community without initial notifications. Tracking them will definitely
be important.

Three essential features should embody agents when deployed in an UC
environment (Sashima et al., 2002): physically groundedness, context sharing,
and device and application independence.

Physically-groundedness feature should enable an agent that is part of
a virtual world to be aware of the context of user who is part of a real
world. The objective is how to effectively support users who are im-
mersed in an UC environment. It is known that conventional human
interface devices are no longer valid and thus, need to be leveraged.
To achieve the physically-groundedness, a spatial information database
could be part of the agent architecture. The agents can notice the subtle
changes of the environment state by monitoring and detecting the re-
vision of data in the database. Despite the simplicity of this solution,
several aspects need to be clarified including how often does the agent
browse the database? How much information is needed to be stored?
And, which information is considered relevant for storage purposes?

Context sharing feature should consider the fact that anyone can re-
ceive a service anywhere and anytime. This calls for a seamless ser-
vice provisioning across different areas. To realize this context shar-
ing, a context-aware service could be implemented as a collection of
autonomous agents. The agents of a service can communicate with the
agents of another service to share information between them. Before
such a context sharing can happen in a transparent way for users and in
a smooth way for agents, a standardization of the agent communication
and knowledge representation mechanisms is important.

Device and application independence feature should promote reusability
of agent-based applications for UC to be developed. Several solutions
could be considered such as the use of agents that hide the diversity of
physical devices and legacy applications.

www.manaraa.com

Capabilities of Agents. A software agent presents a list of attributes that
make it suitable for UC applications. Indeed, there is a natural synergy between
agents, entities that are capable of complex, dynamic interactions, and UC
applications in which such interactions emerge. UC applications are inherently
dynamic with devices continually appearing and disappearing. For instance,
devices to take part to an UC application should be (i) constant, always on
and running; (ii) presence-aware, alerts to the presence of nearby devices and
people; (iii) communicative, able to interact with other collocated devices; and
(iv) proactive, able to perform tasks autonomously without requiring explicit
user intervention (Kortuem and Segall, 2003). The aforementioned features
match quite well the characteristics of what an agent is (see section 3). The
autonomy and goal-orientation of an agent match a device’s proactivity feature.
The temporal continuity and self-starting of an agent match a device’s constant
feature. The flexibility of an agent matches a device’s presence-aware feature.
Last but not least, the capacity to communicate of an agent matches a device’s
communication feature.

Besides these attributes, extra attributes such as mobility, collaboration, and
adaptation of an agent have a major value-added to UC applications. A mobile
agent is an executable program that can move from a source machine to a target
machine where it resumes the suspended operations. Such mobility improves
speed, flexibility, and disconnection handling (Lange and Oshima, 1999). Be-
cause of their asynchronous execution, mobile agents can avoid long periods
of connectivity, reducing network load and thus, saving energy5.

An example of the use of mobile agents in UC is illustrated in (Binder and
Lichtl, 2002) where an architecture of an autonomous station has been devel-
oped. The station does not rely on an external power supply system, but it
comprises a unit for the generation of power in order to ensure its autonomy.
Further, the station is equipped with application-dependent sensors and actua-
tors, and may be deployed in inaccessible environments. Application services
are not hard-coded in the station, instead they are dynamically uploaded on
demand. They are charged for using the resources provided by the station. In
order to support application upload, transmission of results, and remote sys-
tem maintenance, the autonomous station is connected to a public or private
wireless network. Equipped with the necessary sensors and actuators, the au-
tonomous station can be used for several purposes such as on-demand bus stops
and traffic monitoring and tracing.

5 Besides the multiple advantages that the mobile agent technology provisions, several obstacles hinder
the expansion of this technology. For instance, obstacles are not only security-related, but also concerning
performance and scalability. A shipped code consumes bandwidth, and there may be a high startup overhead
to get a mobile agent up and running due to verification and eventually compilation steps.

Agents for Ubiquitous Computing 407

www.manaraa.com

With regard to agent collaboration, the satisfaction of a user’s request may
involve several information resources and devices that both are spread across
the network. To make sure that this involvement efficiently happens, there
is a need for collaboration strategies. Such strategies could help for instance
avoiding conflicts on devices and controlling concurrent accesses to resources.
Acting as proxies to users, information resources, and mobile devices, agents
implement the collaboration strategies and thus, hide the complexity of this
implementation.

We see the use of agents in UC at two different levels. The first level con-
sists of associating users with agents to act on their behalf. These agents will
ensure that for example the context is in advance adjusted and set before a user
enters a certain place, or the device is turned-off while a user is attending a
certain meeting. In that case, the user’s profile will be an important part of
the knowledge that embodies the agent. This profile would contain details on
the user such as his level of expertise, his preferences, and his interests. The
second level consists of associating devices with agents that will run on top
of them. These agents will advertise to the agents of the user community the
capabilities of the devices in terms of services to offer and needs to satisfy.
Making agents runnable on resource-constrained devices is still not obvious.
One of the most advanced platforms for that case is the Lightweight Extensible
Agent Platform (JADE-LEAP) (see chapter 13); it is a Java-based FIPA com-
pliant platform that allows a deployment of static agents on devices such as
cell-phones (Adorni et al., 2001). The ability to have agents on small devices
will become invaluable when building applications such as sensor networks
that require large numbers of simple, inexpensive nodes.

Types of Agents. Usually, the identification of the relevant types of agents
that populate an application is based on the roles that these agents will have to
fulfill. In addition, the types of services that agents will have to offer to end-
users or to peers of agents have an impact on this identification process. We
believe that for an agent-based UC application, the following services could
be considered and thus, should help in the selection of the relevant types of
agents:

408 Methodologies and Software Engineering for Agent Systems

Security services to be assigned to agents: users need a way to authenti-
cate themselves before they undertake any operation. These operations
depend on the authorizations given to users by a trusted authority.

Scheduling and device broker services to be assigned to agents: in case
an UC application involves a distributed set of fixed or mobile devices,
scheduling the use of these devices to avoid conflicts is important. Extra
scheduling is also needed if concurrent use of devices is doable. Be-
sides the scheduling, the specification of the capacities of a device is an

www.manaraa.com

Agents for Ubiquitous Computing 409

initial step to complete. This specification is important for the broker
services so, the matching between users’ needs and available services
can efficiently occur.

Location data services to be assigned to agents: because of the limited
storage capacity of the majority of mobile devices, the data that an UC
application requires can be spread across the network and thus, need
to be localized, fetched, updated, and restored back to its original host.
Indeed, the networking infrastructure must provide robust data transfer
with replication and discovery. Users must be able to count on their data
arriving when they need and where they need to go without their direct
intervention (i.e., explicit).

Coordination services to be assigned to agents: an UC application may
simultaneously engage several devices that have to interact despite the
wireless communication channels. The coordination of these devices
with respect to the process model underlying that application is impor-
tant.

Tracking and backup services to be assigned to agents: monitoring and
logging the various operations are important in an UC application know-
ing that some devices could become down or temporarily unavailable.
Thus, tracking services that trigger backup solutions are deemed appro-
priate.

Service and Agent Discovery. The current environment features the pres-
ence of multiple providers offering various services (e.g, weather forecast in-
quiry, stock markets tracking, vacation planning). To be able to invoke these
services, future users have to discover and select the appropriate providers.
Currently, the most common approach to connect users (or consumers) to
providers and vice-versa is to insert an intermediate layer between them. Gen-
erally, specific types of components called brokers manage this layer. Brokers
receive from the providers their advertisements of services and from the users
their requests of services. Subsequently, the broker matches the advertisements
to appropriate requests. Brokers are also similar to components known also as
directory facilitator or agent management system (Ratsimor et al., 2002). Ini-
tially, an agent registers its services to one of these two components. Agents
searching for services query either the directory facilitator or the agent man-
agement system to discover the agents that have the services. It should be
noted that brokers, directory facilitators, or agent management systems are
mostly assumed to reside in relatively powerful high-end static hosts and the
communication links between agents are assumed to be wired and stable.

UC applications make the problem of discovering services more complex,
since services and even agents can no longer be discovered using a static struc-

www.manaraa.com

ture. Machines hosting directories are mobile and hence, can move out of the
vicinity at any time. Moreover, mobile devices may be extremely resource-
constrained. Different solutions are put forward for UC applications. In this
chapter, three solutions are outlined. The first solution is based on agents and
the use of the concept of peer-to-peer caching of services between nodes (Rat-
simor et al., 2002). The idea is that each participating device will be able to run
a lightweight version of discovery service mechanisms. In addition, the device
will be hosting at least an agent. Every node advertises its services to other
nodes in its vicinity in accordance with certain policies. The second solution
is based on a meeting infrastructure, on top of which agents, respectively act-
ing on behalf of users and providers, meet in a common place (Maamar et al.,
2001). Because agents can be enhanced with mobility mechanisms, they in-
teract with their owner before they move to the meeting infrastructure. The
idea of the meeting infrastructure is to offload most of the computing related to
service discovery from resource-constrained hosts to fixed and reliable hosts.
The third solution is based on the use of surrogates as Sun Microsystems pro-
motes through its surrogate technology. This technology promotes the use of
mobile objects. Mobile objects take care of orchestrating the interactions be-
tween clients and services. Objects are called surrogates and run on surrogate
hosts.

Offloading the computing from resource-constrained hosts to fixed hosts
has to meet certain requirements. These requirements have been discussed
in (Messer et al., 2002) and summarized as follows:

410 Methodologies and Software Engineering for Agent Systems

Transparent, distributed execution: it should be possible to execute an
application on multiple machines without the application code being
aware that multiple machines are being used. In addition, the plat-
form should give the application the appearance of executing only on
the client device.

Application partitioning: it should be possible to dynamically divide the
application at run time into two (or more) partitions that can be placed
on different devices.

Adaptive offloading: to be effective, it should be possible for the parti-
tioning algorithm to consider available resources and execution patterns
of the application. Based on either resource variation triggers or periodic
re-evaluation, the platform should be able to adapt to load and execution
changes to maintain a good partition decision.

Beneficial offloading: the platform should only offload a portion of an
application if doing so could benefit the user. It should be possible for
the user to specify what is beneficial.

www.manaraa.com

(Obreiter et al., 2003) state that today information is spread across large
numbers of devices; many of them are at the same time wireless and mobile. To
take advantage of all these devices considered as computing resources (some-
times could be exploited in clusters), their cooperation becomes a necessity.
Besides the obvious cooperation that occurs at the application layer, device co-
operation on lower layers (including link, network, transport, and discovery)
may be necessary, too. Unfortunately, cooperative behavior means an increase
of resource consumption which is not in the interest of mobile devices. To pro-
mote the importance of cooperation despite the issues of resource consumption
and reliability of wireless networks, it is suggested to distribute incentives to
the devices that display a cooperative attitude vs. those that display an un-
cooperative behavior (Obreiter et al., 2003). Various types of incentives have
been put forward such as authorizations to use certain resources for a longer
period of time, lowering charges of information routing, and enhancements of
reputation.

In UC, agents have a role to play in promoting cooperation among devices
and implementing incentives policies. We recall that agents can work as proxy
for devices. Agents can be embedded into devices or run on fixed hosts from
where they remotely control devices. Therefore, the attitude of devices will
be depicted through their respective agent. Agents will for instance enforce
the role of devices by supporting their commitments in cooperative interac-
tions. Furthermore, the management of the different layers will be outsourced
to agents, each agent being in charge of a specific layer. The interactions be-
tween agents will be of two types: horizontal and vertical. Horizontal inter-
actions occur when two agents representing the same layer but from different
networks will be cooperating, whereas vertical interactions occur when two
agents representing different layers but from the same network will be cooper-
ating. Besides to horizontal and vertical interactions, top-down and bottom-up
interactions will exist between layers. Top-down occurs from the most abstract
layer to the least abstract layer. And, bottom-up occurs from the least abstract
layer to the most abstract layer.

Agents for Ubiquitous Computing 411

Ad-hoc platform creation: it should be possible to create and tear down
the distributed platform between a client and a surrogate at run-time.
Clients should be able to determine which surrogate(s) are the most ap-
propriate to be used based on factors such as latency of access and net-
work bandwidth.

6. Conclusion

In this chapter, we presented the field of ubiquitous Computing and the op-
portunities this field offers to the software agents research community. Ubiq-
uitous computing will be a fertile source of challenges varying from technical

www.manaraa.com

412 Methodologies and Software Engineering for Agent Systems

to social and legal aspects. This large variety of challenges calls for the collab-
oration of several communities besides the agents community. It is the belief
of the authors that the advance of ubiquitous computing depends on overcom-
ing the current limitations of mobile devices. Fortunately, these limitations are
progressively being reduced as technology improves.

Today, a major source of distraction for users is due to the continuous need
of managing their computing resources in each new environment (Sousa and
Garlan, 2002). Situations of changes are multiple and call for a certain form
of assistance that agents in general and adaptive ones (see chapter 8) can pro-
vision. Examples of changes are

When users move to a new environment, their respective agent has to co-
ordinate the migration of all the suspended operations to this new envi-
ronment and negotiate the appropriate support to resume the operations.

When the environment changes, agents have to seek to maintain the same
quality-of-service for the components supporting users’ operations. If
this quality becomes incompatible, agents need to find out alternative
configurations.

When the context changes, agents have to adjust the operations that are
affected by this change. Operations have requirements that depend on
the execution context.

Ubiquitous computing applications are meant to make devices and their
functionalities disappear into people’ surroundings. People should be as lit-
tle conscious as possible of the fact that they are using devices to get a cer-
tain work done. Ubiquitous computing does not promote a single device with
which people interface. Rather, ubiquitous computing promotes multiple de-
vices that adapt themselves to the person as well as the time and place of use.
Agents are deemed appropriate to bridge the gap between people and (using)
all these devices.

www.manaraa.com

Chapter 20

AGENTS AND THE GRID

Service Discovery

Luc Moreau, Michael Luck, Simon Miles, Juri Papay, Keith Decker and Terry
Payne

Abstract The Grid is a large-scale computer system, capable of coordinating resources
that are not subject to centralised control, while using standard, open, general-
purpose protocols and interfaces, and delivering non-trivial qualities of service.
In this chapter, we argue that Grid applications very strongly suggest the use of
agent-based computing, and we review key uses of agent technologies in Grids:
user agents, able to customise and personalise data, agent communication lan-
guages offering a generic and portable communication medium, and negotiation
allowing multiple distributed entities to reach service-level agreements. In the
second part of the chapter, we focus on Grid service discovery, which we have
identified as a prime candidate for the use of agent technologies: we show that
Grid services need to be located via personalised, semantic-rich discovery pro-
cesses, which must rely on arbitrary metadata about services that originates from
both service providers and service users. We present an extension to
the standard UDDI service directory approach that supports the storage of such
metadata via a tunnelling technique that ties the metadata store to the original
UDDI directory. The outcome is a flexible service registry that is compatible with
existing standards and also provides metadata-enhanced service discovery.

1. Introduction
The Grid (Foster and Kesselman, 1999), an open computing infrastructure

that supports large-scale distributed scientific research and applications, has
recently gained heightened and sustained interest from several communities.
It provides a means of developing a variety of e-science applications includ-
ing the study of genetic diseases (such as that described later in this chapter),
particle physics making use of the Large Hadron Collider facility at CERN
(see http://eu–datagrid.web.cern.ch/eu–datagrid), engineering design
optimisation (Cox et al., 2001), and combinatorial chemistry. The underly-
ing computing infrastructure also supports more general applications that in-

www.manaraa.com

volve large-scale information handling, knowledge management and service
provision (De Roure et al., 2003). Initially geared towards high performance
computing, Grid computing is now being recognised as the future model for
service-oriented environments, within and across enterprises, facilitating the
formation of collections of coordinated services, or virtual organisations (Fos-
ter etal., 2001).

Large systems are naturally viewed in terms of the services they offer, and
consequently in terms of the entities providing or consuming services. Grid
applications typically consist of a set of such services that may be spread
across a geographically distributed environment, and selected from a dynam-
ically changing pool of available services. This service-oriented perspective,
in which services (and their availability) may come and go, and collections of
services are combined to achieve more complex tasks, very strongly suggests
the use of agent-based computing (Luck et al., 2003). In this view, agents act
on behalf of service providers, managing access to services and ensuring that
contracts are fulfilled. They also act on behalf of service consumers, locating
services, agreeing contracts, and receiving and presenting results. Agents are
required to engage in interactions, to negotiate, and to make pro-active run-
time decisions while responding to changing circumstances.

In this chapter, we discuss the issues of agent-based Grid computing in the
context of the myGrid project, and then focus in more detail on the specific
issues involved in service discovery, which we identify as a prime candidate
for use of agent technologies. We begin by describing myGrid, which seeks
to provide Grid middleware for bioinformatics (section 2), and then move to a
general discussion of the role and use of agents in Grid computing for bioinfor-
matics (section 3). Section 4 addresses the use of agents for one area of Grid
computing in more detail, namely service discovery. We review the current
technologies and introduce in section 5 a new service directory mechanism,

which augments the functionality of UDDI, the de facto standard
directory for Web Services, with a metadata facility to better customise the
publishing and discovering of services. As UDDI already offers a complex
interface (for example, allowing searches on business categories and service
names), uses a tunnelling technique for dispatching regular UDDI re-
quests to a UDDI service, and intercepting metadata specific requests.
Finally, we present conclusions and discuss further work.

414 Methodologies and Software Engineering for Agent Systems

2. The Grid and Bioinformatics

The Grid. The Grid is a large-scale computer system capable of coor-
dinating resources that are not subject to centralised control, and which uses
standard, open, general-purpose protocols and interfaces, delivering non-trivial
qualities of service (Foster, 2002). As part of the endeavour to define the

www.manaraa.com

Grid, a service-oriented approach has been adopted by which computational
resources, storage resources, networks, programs and databases are all repre-
sented by services (Foster et al., 2002). In this context, a service is a network-
enabled entity capable of encapsulating diverse implementations behind a com-
mon interface.

The service-oriented aproach allows the composition of services into work-
flows in order to form more sophisticated services. Workflows are used for
modelling the coordination between services, with each step in a workflow
corresponding to an environment-dependent decision that must be made by
some computational process.

In the e-business community, a service-oriented architecture is also being
adopted in the form of Web Services, which have emerged as a set of open
standards, defined by the World Wide Web consortium and OASIS, and ubiq-
uitously supported by IT vendors and users. Web Services rely on the XML

syntactic framework, SOAP for exchanging messages, the WSDL interface def-
inition language (see http://www.w3.org/TR/wsdl), and the UDDI service
directory (see http://www.uddi.org).

Against this background, the Grid community has extended Web Services
to support resource management required by Grid computing. This effort has
resulted in the Open Grid Service Architecture (OGSA), a Grid architecture
standardised by the Global Grid Forum, that defines a Grid Service as a Web
Service providing a set of well-defined interfaces, following specific conven-
tions (Foster et al., 2002). In particular, Grid Services have some support for
lifecycle management, and a conventional mechanism for discovery using ser-
vice data elements (a service-specific type of metadata).

Bioinformatics. indexbioinformatics myGrid (http://www.mygrid.org.
uk) is a pilot project funded by the UK e-science programme to develop Grid
middleware in a biological sciences context (Moreau et al., 2003). To illus-
trate the functionality of Grid-based bioinformatics, myGrid has adopted an
application that helps scientists study Graves Disease, a hormonal disorder
caused by over-stimulation of the thyrotrophin receptor by thyroid-stimulating
autoantibodies secreted by lymphocytes of the immune system. The Graves
Disease application follows an in-silico experimental process typical of bioin-
formatics. In this process, the scientist: (i) attempts to discover information
about candidate genes; (ii) makes an educated guess of the gene involved in
the disease; and (iii) designs an experiment to be realised in the laboratory in
order to validate the guess. This in-silico experiment operates over the Grid,
in which resources are geographically distributed and managed by multiple in-
stitutions, and the necessary tools, services and workflows are discovered and
invoked dynamically. It is a data-intensive Grid, in which the complexity is in

Agents and the Grid 415

www.manaraa.com

416 Methodologies and Software Engineering for Agent Systems

the data itself, the number of repositories and tools that need to be invoked in
the computations, and the heterogeneity of the data, operations and tools.

In many resources, each record is analogous to an individual publication
with not only raw data, but also additional annotations supplied by a small
number of human experts (curators). Annotations are typically semi-structured
text that may use keywords and controlled vocabularies, for parsing both by
computers and by humans. Thus, in addition to a large number of data types,
much of the valuable knowledge is locked into semi-structured text, under the
premise that the scientist will read and interpret it.

In broad terms, myGrid follows common agent-oriented approaches in pro-
viding points at which automated processes can make decisions on what to do
next depending on context. This manifests itself as automated service discov-
ery, which we study in some detail in this chapter. First, however, we review
the use of agent technologies in this context.

Over the last few years, bioinformaticsindexbioinformatics has undergone
a rapid and substantial change. The key problem faced in this domain is the
multitude, heterogeneity and variability of data, tools and technical literature
available to bioscientists. Although there are several well-known and highly re-
garded databases, they are not exhaustive, and new ones often appear with new
and different data. Thus, any system intended for application to the bioinfor-
matics domain should be able to cope with this dynamism and openness, and
nothing addresses these concerns as comprehensively as the agent approach.
Agents are flexible, autonomous components designed to satisfy overarching
strategic goals, while at the same time being able to respond to the uncertainty
inherent in the environment. On the one hand, agents provide an appropriate
paradigm or abstraction for the design of scalable systems aimed at this kind
of problem; on the other, the field of agent-based computing offers a set of
technologies that may be used for particular purposes in certain aspects of the
system, including personalisation, communication and negotiation. It is the
latter aspect of agent technologies that we analyse in this context, and discuss
below.

The user agent, also known as a personal agent (Maes, 1994), is an agent
in the sense that it represents a user within the myGrid system. It maintains a
model of the user’s goals and preferences, and uses these to make decisions and

ful feature, especially during workflow enactment, when a workflow is being
executed and a choice of services becomes available. The choice should not be

3. Agents in Bioinformatics Grids

3.1 User Agent

www.manaraa.com

made arbitrarily, but based on the priorities and circumstances of the particular
user. For example, a user may have more trust in the accuracy of one service
than in others. Instead of querying the user each time a particular service needs
to be selected, the user agent can mediate the selection process based on pre-
scribed preferences, or on prior experience. This adaptive behaviour is known
as personalisation.

Another application of the user agent is as a contact point between services
within the Grid and the user. By introducing an intermediary able to receive,
for example, requests from services for the user to enter data or notifications
about changes to remote databases, these messages can be delivered to the user
only when the user is able and willing to receive them. Conversely, the user
can delegate repetitive actions to the user agent, such as authenticating itself
with a service before use.

The idea of an agent communication language dates back to the DARPA

Knowledge Sharing Effort, which led to the design of KQML, and was later fol-
lowed by the FIFA Agent Communication Language (see http://www.fipa.

org).
In MAS, it is common practice to separate intention from content in com-

municative acts, abstracting and classifying the former according to Searle’s
speech act theory (Searle, 1969). Thus, an agent’s communications can be
structured and classified according to a predefined set of message categorisa-
tions, usually referred to as performatives.

In seeking to integrate agent communication with standard Grid technolo-
gies, we have previously described how the idea of agent communication lan-
guages could be mapped onto the communication stack of Web Services. First,
we focused only on the communication layer by encoding performatives and
message contents in SOAP (Moreau, 2002). Second, we used the WSDL lan-
guage for describing agents and the performatives they support (Avila-Rosas
et al., 2002). The aim of this research was to expose agent capabilities as
Web Services so that agents can publish their capabilities (and subsequently
be discovered) in a UDDI registry. The approach turns out to be promising, be-
cause it offers a declarative communication semantics, which promotes inter-
operability, openness, dynamic discovery and reuse of agents. It also opens
the agent world to the Web Services community, helping in the design of more
complex interactions.

Agents and the Grid 417

3.2 Agent Communication Language

3.3 Negotiation Broker
Service users and service providers typically have different criteria regard-

ing the quality and content of services, but can resolve the differences through

www.manaraa.com

the use of negotiation. In Grid computing, one area in which negotiation can be
particularly useful is in notification support. The providers of various services
may want to send out notifications concerning improvements to tools, changes
to databases or updates reflecting the state of enacted workflows, and so on.
Other services or agents might want to register to receive a subset of these
notifications. For stability, we consider asynchronous messages, and manage
their distribution using a notification service.

The subjects (quantitative and qualitative) over which negotiation is under-
taken could include the following forms of quality of service: the cost of receiv-
ing the notification; the topic (event category) of the notification; the frequency
at which notifications are received; the generality of the change described by
the notifications; and the format and accuracy of information contained in the
notification message. These items, and many more, provide a metric for the
quality of service.

An essential requirement for the smooth operation of any distributed system
is that the consumer’s demands of the service are met by the service providers.
However, if these demands are not exactly met for some reason, the consumer
may choose to negotiate with the publisher to find the next best quality of ser-
vice that the publisher can provide. For example, the subscriber may require
notifications weekly, whereas the publisher may only wish to provide them
daily or fortnightly. In this case, the subscriber must choose between the avail-
able options or may decide not to subscribe at all, depending on their particular
priorities. Alternatively, the publisher may be able to exceed the quality of ser-
vice in several ways in which the subscriber may be unaware, and which could
also lead to negotiation.

As the notification service must provide notification support for a potentially
large and varying number of consumers, it should not change the contract cov-
ering the quality of service based solely on the results of negotiation between
a single consumer and a publisher. Therefore, the notification service should
have some control over the quality of service agreed upon. There are also
other reasons why the notification service may usefully limit the interaction
between the publisher and consumer, such as limiting one party’s knowledge
of the other for reasons of privacy or anonymity.

The quality of service broker described in (Lawley et al., 2003) is an agent
conceptually contained within a notification service. This agent negotiates on
behalf of each consumer wishing to receive notifications of a specified quality,
and then produces a final proposal to both the consumer and the producer. It
can negotiate with any of the publishers known to the notification service, and
can also set boundaries on the agreed quality of service so that it is acceptable
to the notification service.

418 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

Service discovery is a critical element in large scale, open distributed sys-
tems such as the Grid, as it facilitates the dynamic identification of resources
abstracted as services. Providers may adopt various ways of describing their
services, such as access polices or contract negotiation details. However, many
resource consumers also impose their own selection policies on the services
they prefer to use, such as derived quality of service, reputation metrics and.
Consequently, both providers and consumers need to be able to locally manage
and augment service descriptions with additional information, i.e., metadata.

The problem of service discovery is compounded by the plethora of differ-
ent types of available service directories. Such services may include: public
directories such as UDDI servers hosted by IBM or Microsoft; specialised di-
rectories such as the I3C bioinformatics service directory; provider-specific
directories such as that of all the services hosted by a research institute; or
even local directories such as the catalogue of all the services hosted by a
laboratory for its own users. However, access to different types of service di-
rectory may require different protocols and query formats, with heterogeneous
response formats.

Against this background, we have identified some key requirements that
can enhance the process of service discovery by making the discovery process
personalised to the user.

Agents and the Grid 419

4. Agent-Based Service Discovery for Grid Computing

Users (not just service providers) should be able to attach metadata to
service descriptions registered in service directories.

Users cannot be expected to systematically query all service directories
in a discovery process. Instead, federating a selected set of service direc-
tories should provide a single point of access for the discovery process.

Users should be able to provide a semantic description of the task they
want to locate, and the discovery should match the requirements against
semantic descriptions of published services.

1

2

3

We will refer to the first two techniques as syntactic, whereas the third is
semantic. Semantic descriptions can be used to specify what a service does in
terms of the application domain (such as bioinformatics). Semantic techniques
can then be applied to broaden or refine the list of services returned on dis-
covery, based on the semantic descriptions and expert knowledge encoded in
ontologies. For instance, queries for services of a general semantic type, such
as sequence alignment tool, may also discover services described by a more
specific type (sub-concept), such as BLAST tool. In the rest of this chapter, we
shall only discuss the first technique, which allows users to attach metadata
to published service instances. We refer the interested reader to (Lord et al.,
2003) for a discussion of a semantic approach to service discovery.

www.manaraa.com

Service discovery has always played a crucial role in the evolution and de-
ployment of distributed systems. Early distributed systems comprised collec-
tions of components (e.g., client-server or object-oriented) that were implicitly
linked through function names, or linked through TCP/IP-based host and port
addresses. The introduction of federated domain name servers (DNS) simpli-
fied and abstracted the use of numerical addresses by providing a registry-
based mechanism for locating hosts. JINI (Arnold et al., 1999) used a similar
approach as part of its Java-based distributed infrastructure. In this system,
classes expose and publish their interfaces as proxy objects with the JINI dis-
covery service. By searching for a given class-name, matching proxy objects
can then be retrieved and invoked, which in turn call the remote service. While
providing a mechanism by which services can easily be added, removed or re-
placed within a system, this approach is based on an assumption that there is a
shared agreement about what a given service type is called (i.e., its class name)
and that there was an agreed and well defined interface. Other distributed tech-
nologies support similar principles, including DCOM and Corba.

Web Services relax several assumptions of the JINI model. Unlike JINI, Web
Services do not form well-defined class hierarchies, so it is difficult to locate
services through class labels. To solve this problem, the UDDI service directory
was introduced, to register both service and provider specific information. The
UDDI registry can be searched through a list of service descriptions, but there
is little support provided for searches based on the service’s signature or user-
defined data.

UDDI supports the tModel (Technical Model) construct, which essentially
serves two purposes: it provides a namespace for a taxonomy, and a proxy
for a technical specification that lives outside the registry. tModels represent
a powerful but limited mechanism for augmenting service registrations with
metadata; their expressiveness was demonstrated by encoding properties from
the DAML-Services (DAML-S) ontology (Ankolekar et al., 2002) within UDDI

records (Paolucci et al., 2002).
However, before tModels may be used, they need to be registered with a

UDDI server and hence be unique. While this is suitable for mapping well de-
fined specifications to tModels, it is inappropriate for specifying large numbers
of locally used metadata attributes (such as a set of attributes that may be shared
by a single organisation or domain). The UDDI V3 specification attempts to
amend this oversight by defining a specific tModel, general_keywords, to allow
simple unregistered key-value pairs to be attached to a UDDI entity. However,
this solution is oriented towards metadata supplied by the service providers,
not users, and allows only simple textual metadata as opposed to more com-
plex structures. An alternative approach to storing explicit, personalised, and

420 Methodologies and Software Engineering for Agent Systems

4.1 Service Discovery Technologies

www.manaraa.com

possibly dynamic metadata that is associated with a service description is re-
quired to address these deficiencies.

In contrast to UDDI, the discovery services used by agent-based systems are
typically designed to provide capability-based search, but provide little sup-
port for metadata-based search. These service registries index and search for
registered services based on capability descriptions (or abstract descriptions of
the service and its interface), rather than provider descriptions. Agents typi-
cally achieve their goals by identifying the types of services or tasks that need
to be assembled together, and by delegating these tasks to those agents that
provide the corresponding services. Such services are normally located by
contacting one of several different middle agents (Decker et al., 1997). Indeed,
some middle agents have been developed for the adoption of a semantically-
rich capability description language such as LARKS (Sycara and Klusch, 2001)
and DAML-S (Ankolekar et al., 2002) to facilitate the matching of semantically
equivalent, interoperable services, despite the fact that labels or syntactic con-
structs in the returned interface definition may not exactly match those in the
query.

Interestingly, however, many Grid projects require large numbers of service
and domain specific metadata. This might include, for example:

Agents and the Grid 421

Perceived reputation of the service, which is critical to build a network
of trusted services in an open environment;

Perceived reliability of the service, which has more value if it is provided
by a third party, and not by the service provider itself;

perceived quality of service by taking into account external factors, such
as network connectivity, bandwidth, latency etc.;

Price for accessing a service (the user’s institution may have negotiated a
local price to access a resource, such as ACM or IEEE digital libraries);
and

Ontological descriptions of a service, which may differ if there are multi-
ple ontologies or interpretations of a service. While we may imagine that
a whole scientific community shares a common ontology, the very nature
of undertaking research necessarily entails that ontology revisions will
be created by those who undertake this research, and who will therefore
want to use them in order to characterise services within their refined
ontologies.

4.2 Notions of Services
One of the necessary elements to tackle in building a service directory re-

lates to the differing notions of what a service actually is. Even within a uni-

www.manaraa.com

fied model such as UDDI, the term is used in subtly different ways. In its most
abstract form, the term service has two complementary meanings. For spec-
ifications driven mostly by the traditional distributed computing community
(UDDI, WSDL), service tends to indicate a physical computing entity or enti-
ties that present some well-specified interface at particular physical endpoints.
For specifications driven by the agents or more general AI community (DAML-

S) (Ankolekar et al., 2002), service tends to indicate a process by which one
may achieve a goal. These two viewpoints have significant overlap – an ex-
tremely common case in specification examples and in real implementations
is one where a physical computing entity presents a well-specified interface
which, in turn, enacts a process that achieves a goal. However, there are also
situations that are harder to reconcile at this very high level of abstraction.
First, from an agent perspective, a service could very well represent a large
workflow quite explicitly spanning multiple physical computing entities (for
example, composite DAML-S services), whereas a single service from the
UDDI perspective may encompass many processes, each of which achieves
different goals.

Not surprisingly, since the computational representation of semantic infor-
mation has been a subject of study in AI for years, the most expressive mod-
els for semantic service description tend to be built around the agent-style
service-as-process concept. While WSDL studiously avoids semantic infor-
mation, UDDI does allow the assignment of predefined categorical values to
both Business Services and Technical Services. Note that such categories are
tied into the view of service-as-endpoint (e.g., geographical location) type of
business, etc.

DAML-S attempts a full description of a service from the point of view that
it is a process that can be enacted to achieve a goal. A full DAML-S service de-
scription incorporates three component perspectives: an abstract description of
the service from the AI planning view (based on inputs, outputs, preconditions,
and effects of a service – the service profile); the workflow view of the more
primitive services needed to accomplish a complex goal (the service process);
the mapping of the atomic parts of this workflow to their concrete WSDL de-
scriptions (the service grounding). At its most complex, the DAML-S process
view may be nested and include an explicit control model in order to moni-
tor, alter, and possibly terminate the execution of a non-atomic service. Such
models are analogous to emerging Web Service workflow proposals, such as
WSFL (Leyman, 2001) and BPEL (Curbera et al., 2002b) and their associated
standards, but this is beyond the scope of this chapter.

422 Methodologies and Software Engineering for Agent Systems

www.manaraa.com

Service oriented computing, as described above in the context of the Grid,
fits very well with agent technologies on the one hand, and the agent paradigm
on the other. First, agent technologies of middle agents such as matchmakers
and brokers can be used to address the problem of service discovery based on
capability descriptions.

More generally, however, the paradigm of agent-based computing offers a
way to view complex systems, with the area of AOSE providing ways of mod-
elling and engineering such systems. These approaches make use of the agent
metaphor to allow developers to reason about sophisticated behaviour in com-
plex distributed systems, while avoiding explicit complexity in system design.
In this view, the complexity arises out of the interactions of individual compo-
nents at run-time rather than at design-time.

Clearly, however, distinct elements of the application must be identifiable
as agents exhibiting flexible behaviour. Service directories matching the re-
quirements given in the previous section are thus good candidates for an agent
modelling approach for several reasons. First, they are federated, with anno-
tations made in one registry being communicated to another with no guaran-
tee of its inclusion in the latter: this is flexible social multi-agent behaviour.
Such directories are autonomous in that they poll other registries according
to some query, and reactive in that they may incorporate the results into their
store, within the current environmental context provided both by a policy and
by communication from other directories. Such flexible, autonomous, pro-
active, reactive behaviour demonstrates just those properties that characterise
the agent approach.

Similarly, services surrounding service discovery can be viewed as agents.
Agents can be present in the system as automatic publishers (or re-publishers)
of services into multiple registries, as automated discoverers of services to be
used in workflows, as personal agents adjusting service discovery to a user’s
preferences, and as automated executors that handle the invocation, compo-
sition and failure of services. Agents can also be used to regularly update
metadata attached to a service description.

Agents and the Grid 423

4.3 Service-Oriented Computing through Agent
Technology

5. Architecture Design
The previous sections have identified Grid service discovery as a good can-

didate for deployment of agent technologies. Indeed, personalisation of con-
tent, flexible social behaviour through federation, and autonomy in the han-
dling of requests, are all features of complex MAS. In this section, we describe
a registry that can personalise content through a mechanism to attach metadata
to service descriptions.

www.manaraa.com

424 Methodologies and Software Engineering for Agent Systems

Since the types of personalised metadata that are required naturally vary
greatly between individuals, organisations, and scientific user communities, an
abstract and highly flexible representation is required. By regarding and imple-
menting metadata items as triples that specify a relation between a subject and
an object, arbitrary metadata can be described and queried via graph-based
search criteria. This can be achieved through the use of RDF (the W3C Re-
source Description Framework, see http://www.w3.org/RDF), which under-
pins the Semantic Web effort (Berners-Lee et al., 2001).

While UDDI is the acknowledged standard directory service mechanism for
Web Services, it is limited in the kind of metadata that can be stored about
services, the ways in which it can be queried, and who can annotate service
descriptions with metadata. Our previous work, UDDI-M, was an early attempt
to associate metadata with services and maintain soft state information (Fos-
ter et al., 2002), based on leases a la JINI. Both ideas have been reused in a
service directory with quality of service information (Shaikhali et al., 2003).
With we take a further step by regarding and implementing meta-
data as triples, which gives us access to Semantic Web technologies such as
RDF, and powerful query languages such as RDQL over a uniform represen-
tation of information. works in conjunction with a UDDI service to
provide precisely these extra capabilities, and eventually support for person-
alised directory service federation and semantic service discovery.

In this section, we describe the principles underlying the architecture of
which was underpinned by the following requirements during the

design:

1

2

should be compliant with the UDDI specification and support
future development in this direction.

Existing client applications and service providers should be able to make
use of

The key components of the architecture are depicted in Figure 20.1, where we
see that is the point of contact for clients, used either for dispatching
requests to UDDI or for processing them locally.

As far as implementation is concerned, was designed to be as
generic as possible. First, all incoming requests are dispatched to the appro-
priate handler according to their type. Second, the backend is spec-
ified by an interface, which can be implemented in different ways: currently,
We support the Jena triple Store (see http://www.hpl.hp.com/semweb/jena.

htm) and relational databases.
This design assumes that all SOAP messages for the service directory is-

sued by the client are routed to which selectively filters them. This
mechanism relies on the combination of the SOAP envelope and namespace
contained in the message to dispatch the message to the appropriate handler,

www.manaraa.com

Agents and the Grid 425

Figure 20.1. Architecture of

as specified by a configuration file. Messages with the UDDI namespace are
directly tunnelled to other UDDI registries, whereas messages with a
namespace are handled locally.

All metadata-related information is stored in the backend. Its
interface is implemented in two different ways. On the one hand, we use a
relational database with five tables for metadata, leases, methods, method pa-
rameters and services. On the other hand, the same information is encoded
by triples in a Jena triple store, for which three implementations are possible:
an in-memory store, a relational database or the Berkeley Triple stores (see
http://www.sleepycat.com).

offers several extensions to UDDI. First, allows the as-
sociation of metadata with services. Second, it supports a lease mechanism that
requires services to renew their lease in order to maintain their registration in

such functionality is present in JINI (Arnold et al., 1999) and is also
ubiquitous in the Open Grid Services Architecture (Foster et al., 2002). Third,

is able to extract the information contained in WSDL files describing
the interface. Fourth, extends the query mechanism of UDDI to allow
searches of all the extra information it accumulates about services. Fifth, in the
specific case of the Jena backend, allows users to express queries in
the RDQL-query language (see http://www.hpl.hp.com/semweb/jena.htm),

offering homogeneous ways of traversing the metadata graph associated with
services.

www.manaraa.com

426 Methodologies and Software Engineering for Agent Systems

While UDDI is defined as a Web Service, a programmatic interface UDDI4J

(see http://www.uddi4j.org) is available for Java: it provides a client-side
proxy with an API implementing the UDDI functionality, which allows pro-
grammers to abstract away from the messaging layer. We have extended this
proxy, by subclassing it, with additional functions for managing
leases and metadata. Thus, we preserve clients’ binary compatibility. Indeed, a
UDDI proxy can be transparently substituted for a proxy, in existing
clients, since the latter is a subclass of the former. Clients do not have to use
the functionality provided by they can use the existing namespace
specification and the calls will be directly tunnelled to the underlying UDDI

service.

6. Performance Analysis
The Grid checklist (Foster, 2002) identifies “non-trivial qualities of service”

as an essential feature of Grids. In taking this on board, the purpose of this
section is to understand the impact of our design decisions on the performance
of discovery. We focus our attention on two specific aspects. First, adopting
the tunnelling technique reduces the implementation effort and allows us to
maintain compatibility with evolving standards, but it comes at the price of
SOAP-message forwarding; in the first part of this section, we analyse the cost
of tunnelling. Second, the use of metadata in a service directory allows us to
reduce the computational load on clients, while performing more selective and
computationally intensive queries at the server side; in the second part of this
section, we analyse the cost of metadata querying, and see how the use of the
RDQL language, offering extended expressiveness to the user, impacts on the
querying cost. A more detailed analysis can be foung in (Miles et al., 2003).

Tunnelling Cost. Our hypothesis is that the overhead introduced by the
tunnelling technique is acceptable. In order to evaluate such a hypothesis, we
have set up the following experimental framework.

A service and its associated UDDI service are hosted in a Tomcat
server. A client uses a UDDI4J proxy successively configured to use UDDI
and In order to avoid the cost of networking, both the client and
services are run on a same machine, and communications take place through
the “localhost” network device. We issue a UDDI-query that searches for a
service with a specific name, for which a single instance has been registered.
Figure 20.2 shows the overhead introduced by which tunnels the
request to UDDI. The tests were run on a Pentium 4, l.5GHz, with 512Mb,
using Tomcat 4.0 and the Registry Server 1.0_02, in the Java Web Services
Developer Pack (1.0_01). The data plotted were averaged over 10 runs. The
tunnelling overhead is 7.2%.

www.manaraa.com

Agents and the Grid 427

Figure 20.2. Overhead of tunnelling

We also evaluated the cost of tunnelling as the size of query results in-
creases, but did not obtain any significant result, as the marginal tunnelling
cost was noise compared to the querying cost.

Metadata Querying Cost. Our second hypothesis is that using a triple
store as an internal representation mechanism for is practical, and
the use of the RDQL-query language can reduce communication costs, and
offload the client, by performing some server-side computation. For these ex-
periments the associated UDDI is not involved, resulting in a commensurate
reduction in query times from the previous experiments.

In Figure 20.3, we show the costs of attaching a property value pair to a ser-
vice already registered, which we call a property write operation, and of finding
a service with a given property value pair, which we call a property read oper-
ation. We used the two different backends, a mySQL relational database and
Jena with the Berkeley triple store for these experiments. For the Jena backend,
we used the Jena API to find the service with given metadata, and we did not
rely on the RDQL-query language. We plotted the results in Figure 20.3a using
a logarithmic scale to differentiate the curves better. Our purpose here is not
to compare persistent storage technologies, but to understand the cost of meta-
data management. We can see that read operations for both backends and the
write operation in the Jena store are very similar. We explain the higher cost
for the write operation with the SQL database by the cost of storing information
on disk, which is probably not measured with the triple store.

In Figure 20.3b, we used the RDQL-query language to search for a service
satisfying 100 properties; 20 such services were found in the system. For
convenience, we again plotted the Jena read line from Figure 20.3a. We can
see that the RDQL-query engine processing a complex query that checks 100

www.manaraa.com

428 Methodologies and Software Engineering for Agent Systems

Figure 20.3. (a) Property read and write (b) RDQL Queries

properties marginally outperforms our direct use of the triple store API, which
itself behaved well compared to a relational backend.

7. Related Work

The notion of agents has recently become popular in the Grid community.
(Rana and Walker, 2000) advocate the use of the agent paradigm to integrate
multiple information sources in problem-solving environments. (Busetta et al.,
2001) describe a BDI agent architecture to simulate query optimisations in the
Data Grid; their long term goal is to provide advanced and adaptable Grid ser-
vices (of which query optimisation is one) based on agent technologies. (Rana
and Moreau, 2000) review how agent techniques may be used to implement
services at the computational Grid layer.

The CoABS (Control of Agent Based Systems) Grid (see http://coabs.

giobalinfotek.com) integrates various heterogeneous agent-based systems,
mobile agent systems, object-oriented systems and legacy systems. It is based
on JINI (Oaks and Wong, 2000) for its lookup service and Java RMI for inter-
agent communication, and tests of scalability of the registration mechanism
have been undertaken in (Kahn and Cicalese, 2001).

Without mentioning agents explicitly, Furmento, Newhouse and Darling-
ton (Furmento et al., 2001) discuss another JINI-based technique for federating
resources. Their long-term goal is the building of a computational economy for
the Grid. Several other projects investigate this idea of a computational econ-
omy, according to which an economics framework regulates the supply and
demand of resources. In particular, Nimrod/G (Buyya et al., 2001) is a re-
source broker capable of budget-based scheduling, giving users incentives to
trade execution time for economic cost.

From the agent side, the community has been very active in devising high-
level interaction protocols able to coordinate the activities of suppliers and

www.manaraa.com

Agents and the Grid 429

consumers. Agents may cooperate in order to achieve a common goal, re-
sulting in cooperative problem-solving which, sometimes, gives rise to adap-
tive behaviour. An alternative approach to this cooperation paradigm is the
market-based model in which agents act as self-interested entities competing
in a market, where goods such as computational resources are traded. Systems
based on this paradigm have been shown to reach an overall equilibrium, in
which resources are efficiently allocated (Clearwater, 1996; Kuwabara et al.,
1996; Miller et al., 1996). The market-based approach gives good results in
particular when resources become scarce, and is a specific case of the more
general type of interaction among self-interested agents, negotiation (Jennings
et al., 1998). As suggested earlier in this chapter, the key characteristics of
negotiation are the presence of some form of conflict that must be resolved in
a decentralised manner, by self-interested rational agents with incomplete in-
formation. Negotiation is the paradigm case of persuasion. It is a process by
which agents come to a mutually acceptable agreement; apart from the work
mentioned earlier, we are not aware of any of these techniques being applied
in the context of the Grid.

Although the paradigm of agents has been used in the context of bioin-
formatics previously, this has not taken a Grid perspective yet. For instance,
both (Decker et al., 2001) and (Bryson et al., 2002) used agent systems to
federate data sources and tools in bioinformatics applications.

8. Conclusion and Future Work
In this chapter, we have discussed the roles and use of agents in Grid com-

puting in general, but drilled down to explore service discovery in more detail.
The examples of the use of agents that we have presented offer substantial new
capabilities for Grid computing but still remain rather localised to some spe-
cific services. In particular, the full potential of agent technologies is yet to be
exploited in future features of our service directory.

More specifically, the chapter describes the need for attaching metadata to
services registered in service directories. This metadata describes functional
and non-functional characteristics of services, and can be supplied by both
publishers and consumers of a service. We have presented the architecture
and the implementation of an extension of UDDI, supporting meta-
data attachment and query. Our experimental evaluation has demonstrated the
soundness of architectural design and implementation.

For the long term, agent-based computing also counts in its armoury a range
of techniques for enabling individual components to collaborate with others, as
well as for competing with others in the provision of services as may be found
in bioinformatics. For example, the former aspects include issues in the con-
struction of virtual organisations, whereby different services come together in

www.manaraa.com

430 Methodologies and Software Engineering for Agent Systems

some coherent whole subsystem for a particular purpose; and issues in the reg-
ulation of open societies of services through the use of norms and electronic
institutions. The latter aspects, for example, include the possible use of sophis-
ticated auction mechanisms, or electronic marketplaces, for obtaining the best
services or resources at the least cost to the user. Additionally, whenever in-
teractions take place between different agents, the issues of provenance, trust
and reputation become important. Though some work has been done in this
area, the focus on both agent-based computing and Grid computing has been
limited, with the majority adopting the stance of assuming complete trust, and
avoiding the issue; questions of deception and fraud in communication and
interaction, of assurance and reputation, and of risk and confidence, are partic-
ularly significant, especially where interactions take place with new partners.

Acknowledgement
This research is funded in part by EPSRC myGrid project (reference GR/

R67743/01). Thanks to myGrid colleagues: Matthew Addis, Nedim Alpdemir,
Andy Brass, Rich Cawley, Neil Davis, David De Roure, Vijay Dialani, Al-
varo Fernandes, Justin Ferris, Rob Gaizauskas, Kevin Glover, Carole Goble,
Mark Greenwood, Chris Greenhalgh, Yikun Guo, Simon Harper, Clare Jen-
nings, Ananth Krishna, Peter Li, Xiaojian Liu, Phillip Lord, Darren Marvin,
Karon Mee, Arijit Mukherjee, Tom Oinn, Steve Oliver, Savas Parastiditis, Nor-
man Paton, Simon Pearce, Stephen Pettifer, Milena V. Radenkovic, Peter Rice,
Angus Roberts, Alan Robinson, Tom Rodden, Martin Senger, Nick Sharman,
Robert Stevens, Victor Tan, Brian Warboys, Paul Watson, Anil Wipat, Chris
Wroe.

www.manaraa.com

Chapter 21

ROADMAP OF
AGENT-ORIENTED SOFTWARE ENGINEERING

The AgentLink Perspective

Zahia Guessoum, Massimo Cossentino and Juan Pavón

Abstract To promote the success of the agent technology the software engineering view-
point should be rapidly addressed. This chapter analyses the existing approaches
and discusses the future of agent technology from the software engineering view-
point. It first highlights the properties of this new concept. It analyses then the
existing methods and tools that have been introduced to facilitate the develop-
ment of MAS. Finally, some promising applications areas are presented and a
Roadmap for AOSE is introduced.

1. Introduction
Success of agent technology can be discussed from different perspectives.

From the point of view of the software engineer, the agent paradigm will be
accepted if it solves development problems (this means, improve the develop-
ment process or allow the implementation of applications that otherwise would
be difficult to built). Users, on their side, are only interested on services, and
they do not care too much about the underlying technology, so agent technol-
ogy would be of concern only if it allows the deployment of new services with
some added-value (for instance, personalization). Agent technology, however,
can facilitate requirements elicitation, which involves both users and develop-
ers, because the communication between them can improve, as agent concepts
are, in principle, easier to understand by users than those common in the com-
puter jargon.

But the final decision to invest in agent technology corresponds to man-
agers. These can consider such investment if the new technology provides
cost-efficient solutions and further business opportunities. Adoption of agent
technology, as any novelty, implies some risks, as it requires changes in pro-

www.manaraa.com

432 Methodologies and Software Engineering for Agent Systems

cesses and tools. At this point we meet again software engineers. They are the
key for the change, so they should be able to evaluate, experiment, promote,
and argue to convince their managers to invest. In this sense we are conscious
that we have to provide substantial advantages of the approach to the software
engineers community, and this will only happen if we show that it will clearly
improve their activities, productivity, and creativity.

With this goal in mind, this chapter discusses the future use of agent tech-
nology from the software engineering viewpoint, addressing several issues:
the agent paradigm as modeling technique, its associated analysis and design
methods, supporting tools for development, validation and testing techniques,
platforms for deployment of agent systems, and areas of application that can
gain substantially from adopting an agent-based approach. It also describes the
AgentLink Roadmap (Luck et al., 2003) for the adoption of agent technology,
whilst co-existing with current practices, services and infrastructures. As it has
been described in the rest of the book, there is already experience in develop-
ing agent-based systems, and there is also some effort in defining methodolo-
gies for building software using the agent paradigm. After around a decade of
these experiences, the question now is whether software developers can adopt
the agent approach for software development and how to integrate this with
current practices (e.g., object-oriented and component based software). This
has associated many concrete questions that we address in the following sec-
tions: Are there needs that current practices do not fully satisfy? How can
agent-based solutions improve the software development process? Are there
standards? Are there working systems of agents in the net? What do they
do? Where can be found those agents? Can we buy software agents? How
much do agent-based systems cost (in terms of deployment, integration, tools,
learning, etc.)? Some answers are described in previous chapters of this book.
Here we integrate some of these results to present a vision of what the future
of agent-based computing and specifically of AOSE will be.

This chapter organizes the discussion as follows. Firstly, in section 2 we
overview those features that make the agent concept interesting for modeling
complex systems, and in this perspective it is possible to consider it as an evo-
lution of object and component based approaches. Given this, in section 3 we
consider how this is applied along the development lifecycle, from a method-
ological perspective. In concrete, we are considering the FIPA proposal for the
future in MAS design. Section 4 follows with a description of significant tools
for implementation, deployment and execution of agents. Tools, in fact, deter-
mine the maturity of the technology, so they can provide a good picture of the
evolution and degree of adoption of the agent paradigm. The opportunities for
using agent technology are the subject of section 5, where some promising ap-
plication areas are reviewed as candidates for making profit of this technology.
Section 6 takes as reference the AgentLink Roadmap for agent-based comput-

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 433

ing and describes a roadmap for AOSE. Finally, the conclusions point out the
risks and opportunities for agent technology success, which relies on the new
ideas for AOSE and the role of standards.

2. Agents as a New Modeling Paradigm

Agent related concepts provide new ways to model complex and dynamic
systems. As it is discussed in (Zambonelli and Parunak, 2002), today’s soft-
ware systems are getting higher degrees of complexity in different respects,
not only in size, as other factors are combining together, for which the agent
paradigm provides some solutions:

The environment of the software systems is more and more dynamic,
subject to continuous changes. Different (not necessarily software) sys-
tems co-exist in the same environment, either collaborating or compet-
ing. Their actions have an impact on the environment, and this happens
concurrently. Therefore, it is not possible to assure that an action will
have the expected result. In this sense, goal-driven approach for system
design is quite convenient, as the goal is more stable entity than others
that may be used to define the system state. Also, as there are several
ways to achieve one goal, the system can be conceived to adapt to chang-
ing conditions by adopting new action courses.

There are more and more computing devices everywhere, with different
capabilities, and connected to (mostly wireless) networks. This implies
higher degrees of distribution, in the management of the system entities,
in the location of control, and in the interactions. The agent approach
assumes these considerations in its foundation. Agents are conceived as
autonomous entities which can reside in a node of a network, and even
migrate from one to another in the course of their lives.

Knowledge processing and management. There is an increasing need to
reason about something more than raw data, to provide knowledge-based
services. At this point, new mechanisms for information processing
are required, and interaction among system components requires higher
level of abstraction, with more support for semantic processing. In this
sense the use of ontologies and agent communication languages suppose
a step forward with respect to traditional object-oriented computing.

Usability of computer-based systems has increased as far as more people
use these. Higher degrees of personalization become an important factor
for service acceptance and differentiation. This implies highly recon-
figurable systems, where there is a need for special processing for each
user with specific data. This is often addressed by considering one agent

www.manaraa.com

434 Methodologies and Software Engineering for Agent Systems

as personal assistant for each user, with capabilities to learn and adapt to
the changing user’s profile.

In spite of these considerations, the agent concept should not be seen as a
radical new paradigm but as an integrating paradigm, or an evolution of current
distributed object systems (in fact, the border between agents and distributed
objects is quite fuzzy, as many papers in agent conferences show). Traditional
distributed object computing has put emphasis on the features of middleware
and associated services, and adopts current object-oriented methods and tools.
Agents appear to cope with the issues above, when computing gets ubiquitous
and intelligence appears elsewhere in a diverse range of devices, from classical
servers to ambience computing.

Agent technologies are founded on distribution technologies and object ori-
entation, and integrate them with artificial intelligence techniques. From dis-
tributed object computing takes the autonomy of agents, which can be dis-
tributed (therefore supporting system scalability) and interact through message
passing. To make distribution feasible, support services are defined, such as
white and yellow pages, in a similar way as in current state of the art middle-
ware.

From object-oriented modeling, analysis and design methods are extended
to include new ways of reasoning about system conception. When thinking
about MAS, responsibilities are clearly separated from one agent to other, and
these are characterized in terms of goals rather than as a set of functions. This is
important in the sense that goals are considered as more invariant than input-
output relationships (functional approach) along system life-cycle evolution.
And this is one of the points where contributions from artificial intelligence
field come into place, for the modelling of agents and agent communities be-
havior. Given that the agent is a goal-based entity, its behavior can be con-
ceived as a reasoning system, where decisions on which task to execute at a
given moment depend on current knowledge of the environment, the status of
achievement of goals, and actual capabilities of the agent (and surrounding
agents).

With this respect, agents are said to work at the knowledge level, and follow
the rationality principle (Newell, 1982). This has the advantage of providing a
high degree of flexibility at individual level (each agent). Also at organizational
level as interactions among agents are defined with intentions (an agent expects
some action from other agent when interacting throw a given primitive), and
with semantic processing (agents understand ontologies, which give semantic
meaning to the words used in their messages; however, how each agent process
each message it is up to the agent).

At the end, the agent concept, from an engineering viewpoint, can be con-
sidered also as an extension of the object-oriented component model. Agents
can be deployed in a distributed system fairly easily. And can be configured,

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 435

not only in some parameters, but in behavior. To an extreme, agents can learn
new procedures, and even new interaction languages and protocols. A MAS
then reflects a set of highly configurable entities. But also the MAS, as an or-
ganization, can be reused. New systems can be conceived as the combination
of agent organizations, each one providing services and relying on services of
other organizations. With this respect, the agent paradigm provides for both
horizontal and vertical decomposition of complex system development. Be-
cause of the growing possibilities of such approach, work on coordination of
agent systems is considered as fundamental.

3. Methods for Building Multiagent Systems
Building MAS is a complex activity that takes both advantage and compli-

cation from the same nature of agents. In fact, we should note that while many
modern MAS are implemented with object-oriented languages (and therefore
need to be specified down to this level), they want to reflect the social solu-
tion to a problem that has not been tackled with an object-oriented approach
but with very different abstractions (communications instead of method invo-
cations, freewill collaborations instead of client-server servitude). The agent
paradigm could serve as a tool to decompose the problem complexity and eas-
ily manage very large systems.

In such a context, several researchers have tried different approaches to sys-
tems development. These works usually reflect the situation that originated
them; we have methodologies arising from specific needs (e.g., robotics), a
strong background in a discipline (usually artificial intelligence or software
engineering) or the exploration of a specific paradigm (adaptive or holonic
agents). We can consider the differences in these origins as a richness, the
overall scenery is huge, variegated and full of interesting perspectives.

Another important factor in this context regards the boundary of the sys-
tem. By now the greatest part of the applications deals with closed systems
and these, also because of security concerns are, and probably for some time,
will be a must in commercial and industrial applications. This situation cannot
though be too lasting. Agents are part of societies and an important step in all
the societies growth towards a full maturity consists in the openness. This will
bring a greater attention for the related problems in all phases of the develop-
ment.

The AgentLink Roadmap (see section 6) divides the past, present and (a pos-
sible) future in the development of MAS into four different phases. Up to re-
cently we approached these problems looking for ad hoc solutions, now we are
going to benefit of more general development methodologies. To go beyond
this phase we have to proceed towards the adoption of well established stan-
dards that include a consistent support for patterns. This standardization will

www.manaraa.com

436 Methodologies and Software Engineering for Agent Systems

encourage the production of a new generation of design support tools that will
increase the dimension of manageable systems and the designers/programmers
productivity. In this sense, we can expect the same process that happened with
object-oriented methods that integrated around the UML standards.

The increasing dimension of MAS is also driving a change in what it means
to design, implement, deploy, test and maintain such systems (Zambonelli and
Parunak, 2002). Probably, in the next future, we will not design complete ap-
plications but rather add new functionality by adding one or more agents to
enormous existing systems. This also mean that implementation choices will
be strongly conditioned by the operating environments (existing systems) and
even more by the respect of well established standards. In fact, the idea of
deploying a whole new system is not valid anymore. Systems will exist (in
the network) and will just evolve by adding new agents, evolving the behavior
of existing agents, or firing old-fashion or unused agents. Once deployed the
new agents will face an open society where unsuspected threats could arise
and crucial elaboration nodes could fall; the system in its entirety should be
able to survive and achieve its goals also if some of the agents will not. In
this situation, testing system validation is different from the actual one. We
will be more concerned with the overall (and emerging) behavior of the so-
ciety rather than the performance of the single agent that could even fail in
doing its duty if some solution will come from the remaining part of the MAS.
Maintenance, at the end, will be more concerned with updating existing sys-
tems on the fly (that means substituting some agents/adding new ones with new
features) rather than stop and replace them with entirely new solutions.

The risk involved in the quick and interesting growth that we can observe in
the agent community, is that the great speed of advancement could bring all the
involved researchers and practitioners to forget that we should not re-invent the
wheel. The problem of designing a system has been discussed since a long time
(first “modern” methods, like DeMarco’s Structured Analysis, belong to the
1970s) and this important heritage, it is sometimes forgotten by agent people.

In this phase of the MAS development it seems that some of the aspects of
the whole process are less deepened than others. This is the case of the orga-
nization that is behind the software production and the maintenance concerns.

Most attentions in this period are directed to technologies, procedures and
artefacts, and mainly to the so called design methods, “a structured approach
to software development whose aim is to facilitate the production of high-
quality software in a cost-effective way” (Sommerville, 2001).

Several methodologies for designing MAS exist in literature, and this book
reports Gaia, Tropos, MaSE as examples of generic methods and ADELFE,
MESSAGE, Prometheus and SADDE as specific-purposes approaches. Many
other diffused methodologies exist, e.g., ADEPT (Jennings et al., 2000), MAS-

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 437

SIVE (Lind, 2001), PASSI (Cossentino and Potts, 2002), for specific problems
(like ADEPT devoted to business process management) or not.

This abundance reflects the different needs and approaches of different de-
signers and it is reasonable to say that an unique specific methodology cannot
be general enough to be useful to everyone without the possibility of some
level of personalization.

3.1 A FIPA Proposal for the Future in MAS Design

In its roadmap, the AgentLink community indicates the identification of
some standard in design methodologies as one of the milestones of the path
towards the success of agent-based systems.

The FIPA answer to stimuli like this consists in the constitution of two spe-
cific technical committees (TC); the first deals with the identification of a new
unifying approach to the design of MAS and the creation of the consequent
standard proposal (Methodology TC); the second one (Modeling TC) aims at
defining a modeling language (Agent UML) that starts from the experience of
the Unified Modeling Language and extends it in order to model MAS.

A fundamental step towards the maturity in design processes for MAS has
already been done with existing methodologies and with the intent to take profit
by this, the Methodology TC will adopt the paradigm of method engineer-
ing (Saeki, 1994). According to this approach, the development methodology
is composed by a method engineer assembling pieces of the process (method
fragments) from a repository of methods built up taking pieces from existing
methodologies (ADELFE, AOR, Gaia, INGENIAS, MESSAGE, PASSI, Tro-
pos, etc.). Obviously if necessary fragments are not available he/she could
create the ones he/she needs. The result will be the best process for the design-
ers (that will actually perform the design) specific needs.

Method fragments are composed of essentially three elements: the process
to be followed to achieve the fragment objective, the artefacts to be produced,
and the roles played by the involved people. The OMG SPEM (OMG, 2002)
standard could be largely applied to the description of the process aspects of
the method fragment and in fact, it is currently under evaluation with very
encouraging partial results. The artifacts to be produced depend on different
aspects: what is to be designed (and this relies on the MAS meta-model) and
how the designer will describe his/hers choices (artifact notation). This last
topic is the specific work of another FIPA Technical Committee (the Modeling
TC) and a standard FIPA modeling language will be standardized for these
purposes. Globally we can see that a complete standardization strategy has
been drawn that should give in the next few years a good support to the MAS
development.

www.manaraa.com

438 Methodologies and Software Engineering for Agent Systems

Figure 21.1. The method engineering process for MAS design currently proposed by FIPA

Looking now at the complete method engineering process we can see that
during a real design process (Figure 21.1), the designer (or better the method
engineer), before building his/hers own methodology, has to select the ele-
ments that compose the meta-model of the MAS he/she will build.

This operation will be supported by a CAME (Computer Aided Method En-
gineering) tool that offers a specific support for the composition of a method-
ology from existing fragments or with new ones.

Once the methodology is composed, the designer or the design team could
perform the established process (supported by a specifically generated CASE
tool) obtaining a model of the system that solves the faced problem. Finally
the agents could be deployed on the required platforms obtaining the running
MAS.

In the last years, the method engineering approach proved successful in de-
veloping object-oriented information systems (Tolvanen, 1998). We should
evaluate the importance that this approach had in the object-oriented context
considering not only its direct influence (not so much companies and individu-
als work in this specific way) but an indirect consequence of it: the most recent
and diffused development processes (for example RUP, the Rational Unified
Process) are not rigid but they are a kind of framework within which the single
designer can choose his/hers own path.

The introduction of the method engineering paradigm in the AOSE has a
peculiar problem. While in the object-oriented context the construction of

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 439

method fragments (pieces of methodology), the assembling of the methodol-
ogy with them and the execution of the design rely on a common denominator
(the universally accepted concept of object and related model of the object ori-
ented system), it is not so for MAS. It is a matter of fact that, there is not an
universally accepted definition of agent nor it exists any very accepted model
of the MAS.

We could describe the system (object or agent-oriented) design process as
the instantiation of the system meta-model that the designer has in his/hers
mind in order to fulfill some specific problem requirements. This meta-model
is the critical element in applying the method engineering paradigm to the
agents world. It is a structural representation of the elements (agent, role,
behavior, ontology, etc.) that compose the actual system with their composing
relationships; this includes generic elements (e.g., the agent) but also specific
ones (e.g., the cooperative agent referred in the ADELFE methodology) and its
absence could be observed in the different uses that different authors make of
these concepts, for example the behavior, that are often presented with slightly
different meanings, granularity or abstraction levels. The availability of a stan-
dard definition of the MAS structure becomes therefore a strategic issue for
the success of a MAS development process that wants to be largely applied
and diffused.

3.2 Validating and Testing MAS
Today no one can claim that requirements for a software system are well-

known and stable. This situation is even more appropriate with MAS, given the
kinds of problems they address. Evolution in requirements brings the necessity
of changing the software in a continuous series of iterations that add new parts
and change existing ones, increasing the risk of introducing defects, deteriorate
performance and stress the adopted technological solutions sometimes beyond
their limits. The resulting quality is not so high as it was expected and the
customer could be a little disappointed with the current release. A common
solution is to propose an evolutive patch and, obviously, the described process
will happen again. In the last nightmare scenario, we intentionally neglected
the fundamental role of a great part of the software engineering research whose
activity spreads over the well known phases of debugging, testing and verifi-
cation. These are the keys of a successful software but the advances in these
fields are undoubtedly not sufficient. In the following we will examine the
main factors that will characterize the progress in this field.

Debugging. It often happens during the coding activity and consists in an-
alyzing the given program and extending/changing its behavior in order to get
a correct behavior and meet the specifications. Considering that often agent-
based software is implemented with object oriented languages, in combination

www.manaraa.com

440 Methodologies and Software Engineering for Agent Systems

with other techniques (for instance, rule-based systems), and in a distributed
environment, debugging a MAS is not a simple task at all. Basically developers
rely on traditional object-oriented debug tools and, with the exception of some
professional environments, support for other paradigms is scarce. Also, some
FIPA-compliant platforms provide monitoring for messages among agents, and
this is basically all the support we can get. In summary, there is clearly a
need for tools that integrate the different programming paradigms and able to
monitor the execution and communication of agents. In developing a MAS
this is even more useful considering the additional complexity introduced by
the agent nature of the system; interaction of all the tools involved in the de-
sign/coding/testing chain gives the opportunity of tightly combine the agent-
level specification with its translation in the coding language and finally modify
it.

Verification and Validation. Verification (answering to the question “Are
we building the product right?”) and validation (answering to the question
“Are we building the right product?”) of MAS have been discussed in several
works with the use of different kinds of formal specifications. The real limit of
this approach is that it is complex and time-consuming; this is often in contrast
with the market rules and its applications are confined in only some specific
applications. In the future we will, hopefully, have an automatic support for
this activity where more intelligent tools will be able to verify the respect of
some specifications even if they are not provided in a exclusive formal way.
We have to admit that this still remains a very open research field.

Testing. Not so much research efforts have been spent in testing MAS.
Topics to be explored regard the identification of test cases (possibly with the
support of specific tools) and the creation and tuning of new techniques for test-
ing agents. While test cases identification and planning can be seen as more
related to requirements than the implementation and therefore not so much in-
fluenced by the MAS nature, totally different considerations can be done for
testing techniques. Often we talk about unit testing and integration testing
addressing the difference scope of the two activities related to the single unit
(agent in MAS testing) rather than its integration with the remaining part of the
system. Working with agents, these definitions have a slight different meaning.
Agents are highly encapsulated entities and adding new features in a system,
often involves introducing new agents rather than changing the existing ones.
Testing the agent behavior (unit testing) is much more complicated than testing
an object-oriented sub-system since often agents are not deterministic. Classi-
cal techniques like equivalence testing (based on the assumption that the unit
behavior is the same in a range of input values) are almost useless with pur-
poseful agents whose behavior is not triggered only by external stimuli but also

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 441

by a specific (and changing) will. Integration testing is again different in agents
from objects because of the different nature of entities relationships. Objects
essentially relate by strict method invocations while agents interact with com-
munications that have several freedom degrees (the same agent can participate
in conversations using different languages, ontologies and rules without loos-
ing the meaning of the act). Integration is not only concerned with entities
interfacing but it also looks at the resulting collective behavior. Researchers
and practitioners are still exploring different ways of coordinate agents in or-
der to obtain a specific behavior and the results although very interesting are
sometimes not definitive and this, partially, justifies the limits that we have in
the subsequent testing of these systems.

4. Tools for the Implementation, Deployment and
Execution

The distributed nature of MAS, and the integration of different paradigms
for building this kind of systems, demand the adaptation of current state-of-
the-art methods and tools to the specific characteristics of MAS:

Openness. New agents can be dynamically added and existing ones can
disappear.

Heterogeneity. It is an important property of complex systems which
can be often modelled by MAS. Heterogeneity requires a high level of
interoperability between heterogeneous agents. Several kinds of het-
erogeneity are considered such as multiples implementation languages,
multiple execution platforms and multiple knowledge representation.

Distribution. MAS are inherently distributed. They have therefore the
advantages of distributed systems, but also the design, deployment and
execution difficulties. The agent paradigm is devoted to the development
of complex systems. The latter are often very dynamic, adaptive and
large scale and requires reliability, security, interoperability and scala-
bility. However, existing distributed systems solutions are often applied
statically by the programmer before the application starts and do not deal
with scalability.

This section discusses agent tools and platforms which have been proposed to
implement, deploy and execute MAS.

4.1 Tools for Designing Agents

Some decades ago architects were used to design buildings by hands or just
using very simple calculation tools. Nowadays, it is sure that no one modern
architect will accept to design even a two floor building without the support of a

www.manaraa.com

442 Methodologies and Software Engineering for Agent Systems

computer and some software (architectural design and structural dimensioning
programs). All of us are aware that software is not less complex than a building
though only in the very last years the use of tools for supporting the design
phase has become widely spread.

The application fields of these tools vary from requirements elicitation to
design, testing, validation, version control, configuration management and re-
verse engineering. The different phases of the software life-cycle can be cov-
ered using separate tools (sometimes with some level of inter-operability) or
an unique environment (an integrated collection of tools) that is often process-
oriented.

The main requirements that a tool should offer, in order to support the future
needs of the agent designer, are:

Usability. MAS-related concepts are more difficult to study and man-
age than the classical object-oriented ones (mainly because a MAS in-
volves more concepts than an object-oriented system), moreover design-
ers get often skilled with objects before than agents and therefore they
receive some kind of imprinting from their initial field of knowledge.
This should guide agent-tools developers to produce applications that in
guiding the newbie into this new world do not neglect the proper atten-
tion for his/hers background.

Multi-view support. The design of an agent-oriented system involves
preparing several different representations of it, each one addressing a
different level of abstraction or point of view on the software. An impor-
tant role can play in this direction the AUML proposal (see chapter 12)
that aims at defining a complete language for agents modeling that starts
from the widely accepted UML and introduces MAS-specific notational
elements.

Traceability. Different views of the system should represent the same
unique software and the designer needs some help in order to coordi-
nate the different artifacts he/she produces. Going through the different
stages of the development process, it is easy to interrupt the correct, logi-
cal flow of the design refinement for example forgetting the specification
of an element or introducing inconsistencies. The problem is particularly
important in MAS since they introduce new concepts, abstractions and
logical steps that complicate the design process. Tools can be very help-
ful in achieving traceability. They can provide automatic checks of many
different aspects and they are not so influenced by the system complex-
ity if its (expected) underlining structure (the meta-model) is clear and
the design process is completely defined.

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 443

Specific support for the software process. Beside the conventional needs
presented by several projects (e.g., information and legacy level sys-
tems), there is now a consistent part of software that is strongly effected
by time-to-market constraints. In many fields (e.g., e-commerce), once
a customer need is detected the gap before the introduction of the piece
of software tackling with it, is usually a strategic period for the involved
company. A competitor could be ahead of time and occupy the new
market slot. Quality of the first release is, in this case, not the pri-
mary goal of the development team. A limited but working program
is always better, in this scenario, than no software at all. Agile design
methodologies (that are becoming quite diffused in other contexts) are
still not present in the MAS development scenery but it is likely that
their need will be sharply perceived in the very next future. We already
discussed the future of MAS development process in the previous sec-
tions and again we would like to underline the concept that the agent
society has to overcome the actual experimental phase in which many
systems are developed with a low attention for rigorous (or sometimes
ad-hoc conceived) design methods and go towards a full maturity stage
where industrial quality programs are released after performing problem
(or context) specific life-cycles.

Generality. Let us suppose that a large software house decides to move
into the agent world and to produce only agent-based software. At the
first step some developing tools and language will be identified and
workers will be trained to work with them. This is a costly phase and
the company management will be very careful about the outcome of this
effort. In this scenario it is not presumable that the chosen environ-
ments could be specific for only some contexts. Applications produced
by such a company will probably vary with time and address very differ-
ent concerns; supposing that specific tools will be adopted (and studied)
for each different project it is not realistic. We need therefore to look
at an highest level of generality for tools we will produce in the future.
While there (still) will be some space for domain-specific solutions (for
example robotics or telecommunications), more often, general purpose
yet configurable environments will satisfy the real needs in many cases.

Tools integration. We can easily forecast a scenario in which the de-
signer can choose his/hers tools from a consistent range of possible
alternatives. Different programs will be used to support the require-
ments elicitation, actual design and final implementation coding activ-
ities. There is an undoubted technological problem in making all of
these tools to cooperate in a plain way. The solution in the object ori-
ented world comes from choosing an easy, standard but enough struc-

www.manaraa.com

444 Methodologies and Software Engineering for Agent Systems

tured inter-operation language such as XML (or its derivative like XMI
and some others). This will be probably the initial choice in the fu-
ture agent design environments but we think this forgets an important
aspect of MAS: they are strongly ontology-based. While XML can be
considered a good vehicle for information it does not provide (by itself)
the proper structural support for each specific exchange operation. It is
more likely that knowing the ontology of the domain where the agent
system will be deployed also the tools involved in its design can adapt
to it and interact using ontology-based communications that deal with
specific problem abstractions rather then with pre-configured structures.

4.2 Agent Implementation Tools

To make concrete the various research in MAS and facilitate the implemen-
tation of applications, several agent implementation tools have been proposed.
In the present state of research and development, we find contributions on agent
architectures and on agent implementation languages.

Agent Implementation Languages. Several languages have been intro-
duced to facilitate the implementation of agent societies. The most common
approach is based on the provision of libraries for common-use programming
languages, such as Java, which are enriched with utilities for agent communi-
cation and services (e.g., FIPA based) and the use of other programming ap-
proaches (declarative, rule-based, etc.). For instance, several MAS have been
implemented with actors (or active objects) languages which are extensions of
object oriented languages (Gasser and Briot, 1992).

Another approach consists on the definition of a brand new language, as in
the Agent Oriented Programming (AOP) work (Shoham, 1991). AOP is a new
programming paradigm that supports a societal view of computation. In AOP,
agents (an agent is defined by Shoham as “an entity whose state is viewed
as consisting of mental components such as beliefs, capabilities, choices, and
commitments”) interact to achieve individual goals. The agent behavior is de-
scribed by a rule base that reacts to received messages and changes of agent
state. The agent dynamic is therefore implemented by a first-order forward
chaining inference engine.

A substantial amount of work has been done in pursuit of a complete for-
malism to develop the AOP idea, see, e.g., PLACA (Thomas, 1993), and
Concurrent-METATEM (Fisher, 1994). Few attempts, however, have been
made towards developing an actual, useful agent-oriented language. The result
is that the few actual languages in existence are far from achieving the promise
of AOP and are of little practical use. The development of a useful agent-
oriented language should rely on existing agent and multiagent architectures.
The latter functionality provides the basic primitives to facilitate agent imple-

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 445

mentation and their interactions, see the languages Claim (Fallah-Seghrouchni
and Suna, 2003) and 3APL (Dastani et al., 2003).

Agent Architectures. Several agent architectures have been proposed,
Two main approaches can be distinguished: cognitive and reactive, a survey is
given in (Wooldridge and Jennings, 1995b) and examples are given in (Avouris
and Gasser, 1992). In the cognitive approach, each agent contains a symbolic
model of the outside world, about which it develops plans and makes decisions
in the traditional (symbolic) Artificial Intelligence way. On the other hand,
in the reactive approach, simple-minded agents react rapidly to asynchronous
events without using complex reasoning. Neither a completely reactive nor a
completely cognitive approach is suitable for building complete solutions for
real-life applications. Hybrid models (Ferguson, 1992; Muller and Pischel,
1994) have been proposed to combine the advantages of both reactive and cog-
nitive models. In these models, agents are decomposed in a set of modules
which can in turn be of a reactive or cognitive nature. However, the problem
with such models is that of implementing various types (reactive, cognitive)
of agents. Indeed, real-life applications require often various types of agents
and variable granularity. For instance, these hybrid models cannot be used to
implement small agents such as ants.

A good architecture may be seen as an open model. This solution is pro-
vided by modular architectures which are based on software components. A
modular agent architecture makes the agent an open system. Modularity in-
troduces flexibility and allows to change easily components with the aim of
improvement or tests. Modularity provides thus several advantages: (i) possi-
bility to have variable granularity of agents; (ii) possibility to have agents with
adaptive structure, each agent can dynamically change its components and the
relations between these various components; (iii) possibility to integrate differ-
ent agent models; and (iv) possibility to include a library of reusable compo-
nents. A good agent implementation tool should be based on a modular agent
architecture and provide libraries of components. On this way, each agent has
one or more components, e.g., communication, interaction protocols, etc. This
approach facilitates the resue and integration of existing paradigms, e.g., pro-
duction rules, and state machines. An example of modular architecture is given
by (Guessoum and Briot, 1999).

Agent architectures provide several facilities to build MAS. To develop a
MAS, one has to know all the components or classes of the library (agent
classes, simulation classes). These development difficulties raise from the di-
versity and complexity of agent and multiagent concepts (coordination, inter-
action, organization, etc.). This complexity makes the use of most existing
agent tools very difficult to non-owners (developers) of the tools. To deal with
this complexity, PTK (see section 4 for more detail) proposed to provide tools

www.manaraa.com

446 Methodologies and Software Engineering for Agent Systems

Figure 21.2. Overview of the FIPA architecture

to facilitate the specification of MAS and to elaborate a process development.
Another way to facilitate this choice is to make abstraction of some technical
details and define meta-models by using the MDA (Model Driven Architec-
ture) approach introduced by the OMG (OMG, 2001).

4.3 Agent Deployment Tools
The first MAS (Avouris and Gasser, 1992) were composed of a set of homo-

geneous agents which run on one computer or a local network of computers.
So, the deployment problem was kept off. However, Recent real-life applica-
tions (see section 4) are often open and distributed at large scale and must run
continuously without any interruption. Moreover, the agents are often hetero-
geneous. The deployment of these new complex MAS requires new multiagent
architectures and new solutions for the related problems of these systems such
heterogeneity, openness and reliability.

To promote the success of the emerging agent-based applications, FIPA pro-
vides an abstract environment for the agent deployment and agent communi-
cation (see http://www.fipa.org). This environment implements a set of
agents which provide the basic services for the deployment of MAS (see Fig-
ure 21.2).

The FIPA architecture offers several facilities to deploy MAS and to add
dynamically new agents. However, several problems (fault, observation, etc.)
have not been solved. Another way to deploy MAS, to achieve fault-tolerance
and to solve other problems related to this deployment is to reuse solutions
provided for distributed systems. For instance, replication of data and/or com-
putation is an effective way to achieve fault tolerance in distributed systems.
A replicated software component is defined as a software component that pos-
sesses a representation on two or more hosts (Guerraoui and Schiper, 1997).
But in most cases, replication is decided by the programmer and applied stat-

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 447

ically, before the application starts. This works fine because the criticality of
components (e.g., main servers) may be well identified and remain stable dur-
ing the application session. Opposite to that, in the case of multiagent appli-
cations, the criticality of agents may evolve dynamically during the course of
computation. Moreover, the available resources are often limited. Thus, simul-
taneous replication of all the agents of a large-scale system is not feasible. An
idea is thus to automatically and dynamically apply replication mechanisms
where (to which agents) and when it is most needed (Guessoum et al., 2002).

The provided solutions for MAS deployment are promising. The emergent
applications (see section 4) allow to validate these solutions, answer the open
questions and complete the existing methodologies to deal with the deploy-
ment.

5. Application Opportunities

MAS rely on several sub-fields of computer science such as object-oriented
programming, artificial intelligence, artificial life, distributed and concurrent
systems. The first applications of MAS have been used to improve existing sys-
tems in these sub-fields and to deal with their limitations. For example, MAS
appear as interesting new tools to control complex process where information
flow is abundant and alarms are common. These systems were often based on
artificial intelligence techniques. A large wide of applications have therefore
been developed in this area: air-traffic management to increase the efficiency
or air travel, intensive care monitoring to assist the clinical staff in decision
making. Moreover, the key concepts of MAS (emergence, self-organization,
etc.) are very useful to understand/explain complex systems. A wide range
of applications in multiagent simulation have thus been developed including
bioinformatics, ecosystems and economic models.

Several recent emergent application domains are based on a set of dis-
tributed and cooperative entities which manage a large set of heterogeneous
resources and provide services to the users. The management of this open set
of resources is a hard problem, new resources can be dynamically added and
existing ones can be changed and removed. Moreover, the interaction of vari-
ous users to facilitate the use of this set of heterogeneous entities is not easy.
For instance Grid Computing (see chapter 20), Ambient Intelligence and Web
Services are the well known and promising emergent applications:

Grid Computing intends to realize an infrastructure for large-scale dis-
tributed scientific applications.

Ambient Intelligence embraces the advent of new computing systems,
consisting of smart computing systems devices, which are likely to be
more and more surrounded with in our working place, at home and dur-
ing our leisure (Servat and Drogoul, 2002).

www.manaraa.com

448 Methodologies and Software Engineering for Agent Systems

Web services is a new way that adapts businesses to Internet technolo-
gies. The development of industry standards, products, and tools for
supporting Web service system development is a very active area.

The approach to building Grid Computing platforms, Ambient Intelligence and
Web services systems has several similarities with the engineering process of
a collection of agents. For these applications, agents will be used to facilitate
the design of applications. For examples, agents are used to

Interact with users (personal assistant);

Find and select components/services that match a given requirement;
and

Configure or compose the selected components/services.

Moreover, agents are used to control the execution of the so built systems and
allow the self-configuration of the components/services to deal with dynamic
changes.

6. A Roadmap for Agent-Oriented Software Engineering

Based on the examination of current status of agent technology, AgentLink
published a roadmap of agent research and development over the first decade of
the century (Luck et al., 2003), consisting of four major phases. Currently
we are in the first phase, where agent systems are usually built from scratch,
with ad-hoc designs and little of reuse. Usually, the agent system is devel-
oped by just one team, for a particular application, in a concrete domain where
the ontology and the communication protocols among agents are well-defined
in advance. Agents are implemented with an object-oriented language (e.g.,
Java), sometimes with additions (such as a rule engine, a prolog interpreter or
some other declarative language). There is not too much use of agent-oriented
methodologies, and only in lucky situations object-oriented methods and tools
are used. The resulting systems have some features of agency, such as a goal-
driven architecture, the introduction of learning mechanisms (either individual
or collective), some emergent behavior, or the definition of higher-level in-
teractions (i.e., based on some agent communication language, such as FIPA
ACL). The benefits of this first generation of agent systems is that some of
them can show the potential of agent technology. But in order to transfer this
to the industry there is a clear need of adopting well-established languages (for
modeling and implementing agents), and a set of methods and tools to work
with. The experience in the development of these agent-based systems should
provide the foundations for well-established methodologies.

As it has been presented before, there are already several attempts to de-
fine these methodologies, see, e.g., (Giorgini et al., 2003; Giunchiglia et al.,

www.manaraa.com

Roadmap of Agent-Oriented Software Engineering 449

2003; Wooldridge et al., 2002c). Although most of them started from theoreti-
cal work (e.g., Gaia, Tropos), some are based on practical experience from real
developments (e.g., MaSE, INGENIAS, PASSI). They are both evolving, the
former by being finally used in practice, the latter by being formalized as ex-
perience provides more insight. There is also a trend to unify agent modeling
languages, as it is the case of AUML, and for integrating different methods, for
instance, by using meta-models, e.g., MetaMeth (Cossentino et al., 2003).

AgentLink expects that these methodologies will establish in the period
2003-05. This will have an impact in the adoption of agent technology, as
agent systems, because of a more formal use of engineering practices, will gain
in quality, scalability, robustness, reuse, and integration with legacy systems.
The establishment of AOSE practices will facilitate coordination of agent de-
velopments by different teams, and will go together with the availability of
agent platforms with more support for agent management, system scalability
and robustness. Rather than creating new agent implementation languages,
agent platforms will provide configurable frameworks for defining new types
of agents, which will be instantiated by describing the main elements of their
behavior with agent-related concepts, such as goal, task, rule, policy, etc. At
this moment, it will be easier to quickly create and deploy new types of agents
that will be able to interoperate, following a service-oriented architecture, with
other agents in the system. This phase will therefore allow the development
of agent systems, but some issues will be still pending to exploit full agent
capabilities.

The third phase, during 2006-08 will promote a deeper integration and stan-
dardization of agent modeling language and development methodologies, as
a result of the experience with the methodologies and their supporting tools.
This will go together with advances in specific questions that the agent commu-
nity is currently addressing, concerning the openness of agent systems, more
specifically to deal with the semantic heterogeneity. At this time, the agent-
oriented approach will be ready to have a higher relevance at industrial level.
There will be a market of agent components, generic or domain-specific, which
will be based on the use of open protocols and agent communication languages.
These will be used as building blocks that the agents will be able to acquire
dynamically depending on the situation. This will facilitate inter-domain inter-
actions and higher degrees of service composition.

In the final phase, agents will further develop their learning capabilities,
therefore it will be possible to develop complex coordination schemas and role
assignment strategies. Organizations will be able to change dynamically and
will be an important building block for the development of new MAS. There
will be not only agents for sale, but complete, highly configurable, organiza-
tions of agents. In this phase, systems will be conceived as a set of interacting
organizations.

www.manaraa.com

450 Methodologies and Software Engineering for Agent Systems

7. Conclusions

AOSE has got the attention of many practicioners and researchers in the last
five years. As experience in the development of agent-based software becomes
more usual, more systematic approaches for building this kind of systems start
to appear. They start usually from well-proved object-oriented methodologies,
which are extended to cope with new concepts from agent technology, thus in-
tegrating techniques from other disciplines, specially from the field of artificial
intelligence. Some lessons can be learned from those areas. For instance, the
need for unification of terms and modelling language as a basis for the integra-
tion of methods and supporting tools. There are efforts in this direction, as it
has been described in this chapter.

Agent technologies should not be considered as a totally revolutionary ap-
proach, but rather as an integration and extension of current state of the art. For
instance, agents go further than component technology, increasing the levels of
reusability to more complex entities, such as agents and organizations. They
also provide new ways of distribution and flexibility of information processing,
together with an inherent adaptation to changing environment. As such, the
agent paradigm fits well with the needs for the coming wireless multi-modal
information services. The current evolution of proposals in the area has shown
the feasibility of the technology. Now it is time for industrial deployment and
support, and in this sense the role of standards plays is relevant. A positive
sign is that FIPA has already started activities in this line.

www.manaraa.com

References

[Abelson, 1996] Abelson, S. (1996). Structure and Interpretation of Computer
Programs. The MIT Press.

[Abelson et al., 2000] Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy,
G., Knight, T., Napal, R., Rauch, E., Sussmann, G., and Weiss, R. (2000).
Amorphous Computing. Communications of the ACM, 43(5), pages 43–50.

[Abowd, 1999] Abowd, G. D. (1999). Software Engineering Issues for Ubiq-
uitous Computing. Proceedings of the International Conference on
Software Engineering (ICSE’99), Los Angeles, USA.

[Adorni et al., 2001] Adorni, G., Bergenti, F., Poggi, A., and Rimassa, G.
(2001). Enabling FIPA Agents on Small Devices. Proceedings of the

International Workshop on Cooperative Information Agents (CIA 2001),
Rome, Italy.

[Aksit et al., 1993] Aksit, M., Wakita, K., Bosch, J., Bergmans, L., and
Yonezawa, A. (1993). Abstracting Object-Interactions using Composition-
Filters. Guerraoui, R., Nierstrasz, O., Riveill, M. (Eds.) Object-based Dis-
tributed Processing, Springer-Verlag.

[Alberts et al., 2001] Alberts, D., Garstka, J., Hayes, R., and Signori, D.
(2001) Understanding Information Age Warfare. CCRP Publication Se-
ries.

[Amant, 2003] Amant, R. S. (2003). Planning Resources at the North Car-
olina State University. Available at http://www.csc.ncsu.edu/faculty/

stamant/planning–resources.html.

[Ankolekar et al., 2002] Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O.,
McDermott, D., Martin, D., McIlraith, S., Narayanan, S., Paolucci, M.,
Payne, T., and Sycara, K. (2002). DAML-S: Web Service Description for
the Semantic Web. Proceedings of the International Semantic Web Con-
ference (ISWC), pages 348–363.

www.manaraa.com

452 Methodologies and Software Engineering for Agent Systems

[Aridor and Lange, 1998] Aridor, Y., and Lange, D.B. (1998). Agent Design
Patterns: Elements of Agent Application Design. Proceedings of the
International Conference on Autonomous Agents (Agents’98), pages 108–
115, St. Paul, USA.

[Ark and Selker, 1999] Ark, W. S., and Selker, T. (1999). A Look at Human
Interaction with Pervasive Computers. IBM Systems Journal, 38(4).

[Arnold et al., 1999] Arnold, K., O’Sullivan, B., Scheifler, R., Waldo, J., and
Wollrath, A. (1999). The Jini Specification. Sun Microsystems.

[Arquilla and Ronfeldt, 2000] Arquilla, J., and Ronfeldt, D. (2000). Swarm-
ing and the Future of Conflict. Available at http://www.rand.org/

publications/DB/DB311.

[Avila-Rosas et al., 2002] Avila-Rosas, A., Moreau, L., Dialani, V., Miles, S.,
and Liu, X. (2002). Agents for the Grid: A Comparison with Web Services
(Part II: Service Discovery). Proceedings of the Workshop on Challenges in
Open Agent Systems, Bologna, Italy.

[Avouris and Gasser, 1992] Avouris, N. A., and Gasser, L. (Eds.) (1992). Dis-
tributed Artificial Intelligence: Theory and Praxis. Kluwer Academic Pub-
lishers.

[Axelrod, 1984] Axelrod, R. (1984). The Evolution of Cooperation. Basic
Books.

[Baecker et al., 1997] Baecker, R., DiGiano, C., and Marcus, A. (1997). Soft-
ware Visualization for Debugging. Communications of the ACM, 40(4),
pages 44–54.

[Ball, 1996] Ball, P. (1996). The Self-Made Tapestry: Pattern Formation in
Nature. Princeton University Press.

[Bardram, 1998] Bardram, J. (1998). Designing for the Dynamics of Cooper-
ative Work Activities. Proceedings of the ACA4 Conference on Computer
Supported Cooperative Work.

[Barthelmess and Anderson, 2002] Barthelmess, P., and Anderson, K. M.
(2002). A View of Software Development Environments based on Activity
Theory. Computer Supported Cooperative Work (CSCW), 11(1–2), pages
13–37.

[Bauer, 1972] Bauer, F. L. (1972). Software Engineering. Information Pro-
cessing 71.

www.manaraa.com

References 453

[Bauer, 1999] Bauer, B. (1999). Extending UML for the Specification of In-
teraction Protocols. Submission for the Call for Proposal of FIPA and
revised version of FIPA-99.

[Bauer, 2001] Bauer, B. (2001). UML Class Diagrams Revisited in the Con-
text of Agent-Based Systems. Wooldridge, M., Ciancarini, P., and Weiss,
G. (Eds.) Proceedings of Agent-Oriented Software Engineering (AOSE’01),
pages 1–8.

[Bauer et al., 2001] Bauer, B., Müller, J. P., and Odell, J. (2001). Agent UML:
A Formalism for Specifying Multiagent Software Systems. International
Journal of Software Engineering and Knowledge Engineering, 11(3), pages
207–230.

[Bellavista et al., 2001] Bellavista, P., Corradi, A., and Stefanelli, C. (2001).
Mobile Agent Middleware for Mobile Computing. IEEE Computer, 34(3).

[Bellifemine et al., 2001] Bellifemine, F., Poggi, A., and Rimassa, G. (2001).
Developing Multi-agent Systems with a FIPA-Compliant Agent Frame-
work. Software Practice and Experience, 31, pages 103–128.

[Benni, 1988] Beni, G. (1988). The Concept of Cellular Robotic System. Pro-
ceedings of the IEEE International Symposium on Intelligent Control, Los
Alamitos, CA, pages 57–62.

[Benni and Hackwood, 1992] Beni, G., and Hackwood, S. (1992). Stationary
Waves in Cyclic Swarms. Proceedings of the IEEE International Sympo-
sium on Intelligent Control, Los Alamitos, CA, pages 234–242.

[Benni and Wang, 1989] Beni, G., and Wang, J. (1989). Swarm Intelligence.
Proceedings of Annual Meeting of the Robotics Society of Japan, Tokyo,
pages 425–428.

[Benni and Wang, 1991] Beni, G., and Wang, J., 1991. Theoretical Problems
for the Realization of Distributed Robotic Systems. Proceedings of the
IEEE International Conference on Robotic and Automation, Los Alamitos,
CA, pages 1914–1920.

[Bergenti, 2003] Bergenti, F. (2003). A Discussion of Two Major Benefits
of Using Agents in Software Development. Engineering Societies in the
Agents World III, pages 1–12, Springer-Verlag.

[Bergenti and Poggi, 2001] Bergenti, F., and Poggi, A. (2001). A Develop-
ment Toolkit to Realize Autonomous and Interoperable Agents. Proceed-
ings of the International Conference on Autonomous Agents, pages 632—
639.

www.manaraa.com

454 Methodologies and Software Engineering for Agent Systems

[Bergenti and Ricci, 2002] Bergenti, F., and Ricci, A. (2002). Three Ap-
proaches to the Coordination of Multiagent Systems. Proceedings of the
2002 ACM Symposium on Applied Computing, pages 367–372.

[Berlin, 1994] Berlin A. (1994) Towards Intelligent Structures: Active Control
of Buckling. Ph.D. Thesis, MIT.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001).
The Semantic Web. Scientific American, 284(5), pages 34–43.

[Bernon et al., 2003] Bernon, C., Camps, V., Gleizes, M.-P., and Picard,
G. (2003). Tools for Self-Organizing Applications Engineering.
Di Marzo Serugendo, G., Karageorgos, A., Rana, O. F., and Zambonelli, F.
(Eds.) Proceedings of the International Workshop on Engineering Self-
Organizing Applications (ESOA 2003), Melbourne, Australia.

[Bernon et al., 2002] Bernon, C., Gleizes, M.-P., Peyruqueou, S., and Picard,
G. (2002). ADELFE: A Methodology for Adaptive Multi-Agent Systems
Engineering. Petta, P., Tolksdorf, R., and Zambonelli, F. (Eds.) Proceedings
of the International Workshop on Engineering Societies in the Agents
World (ESAW 2002), pages 156–169.

[Biebricher, C. K., 1995] Biebricher, C. K., Nicolis, G., and Schuster, P.
(1995). Self-Organization in the Physico-Chemical and Life Sciences. Eu-
ropean Union, 1995.

[Bieszczad et al., 1998] Bieszczad, A., Pagurek, B., and White, T. (1998).
Mobile Agents for Network Management. IEEE Communications Surveys,
1(1), pages 2–9.

[Bigus et al., 2002] Bigus, J. P., Schlonagle, D. A., Pilgrim, J. R., Mills III,
W. N., and Diao, Y. (2002). ABLE: A Toolkit for Building Multiagent
Autonomic Systems. IBM Systems Journal, 41(2), pages 350–371.

[Binder and Lichtl, 2002] Binder, W., and Lichtl, B. (2002). Using a Secure
Mobile Object Kernel as Operating System on Embedded Devices to Sup-
port the Dynamic Upload of Applications. Proceedings of the IEEE
International Conference on Mobile Agents (MA’2002), Barcelona, Spain.

[Bledsoe, 1985] Bledsoe, L. J., and Henschen W. W. (1985). What is Au-
tomated Theorem Proving? Journal of Automated Reasoning, 1(1), pages
23–28.

[Boehm, 1984] Boehm, B. W. (1984). Verifying and Validating Software Re-
quirements and Design Specifications. IEEE Software, 1(1), pages 75–84.

www.manaraa.com

References 455

[Boissier, 2003] Boissier, O. (2003). Master Web Intelligence: Organizations.
Available at http://www.emse.fr/~boissier.

[Bonabeau, 2003] Bonabeau, E. (2003). Swarm Intelligence. Proceedings of
Swarming: Network Enabled C4ISR, Tysons Corner, VA.

[Bonabeau et al., 1999] Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999).
Swarm Intelligence. Oxford University Press.

[Booch, 1994] Booch, G. (1994). Object-Oriented Analysis and Design with
Applications. Addison-Wesley.

[Booch et al., 1999] Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The
Unified Modeling Language User Guide. Addison-Wesley.

[Bordini et al., 2002] Bordini, R. H., Bazzan, A. L. C., de O. Jannone, R.,
Basso, D. M., Vicari, R. M., and Lesser, V. R. (2002). Agentspeak(XL):
Efficient Intention Selection in BDI Agents via Decision-Theoretic Task
Scheduling. Proceedings of the International Joint Conference on Auto-
nomous Agents and Multiagent Systems, pages 1294–1302.

[Borriello, 2002] Borriello, G. (2002). Key Challenges in Communication for
Ubiquitous Computing. IEEE Communications Magazine.

[Bowen, 2003] Bowen, Jonathan (2003). Formal Methods Resources. Avail-
able at http: //www.afm.sbu.ac.uk.

[Box et al., 2000] Box, D., Skonnard, A., and Lam, J. (2000). Essential XML:
Beyond Markup. DevelopMentor Series. Addison-Wesley.

[Bratman, 1987] Bratman, M. E. (1987). Intentions, Plans, and Practical Rea-
son. Harvard University Press.

[Bratman et al., 1988] Bratman, M. E., Israel, D., and Pollack, M. (1988).
Plans and Resource-Bounded Practical Reasoning. Journal of Computa-
tional Intelligence, 4(4), pages 349–355.

[Brazier et al., 1994] Brazier, F. M. T., van Langen, P., Treur, J., Wijngaards,
N., and Willems, M. (1994). Modelling a Design Task in DESIRE: The VT
Example. Technical Report IR-377, Universiteit Amsterdam.

[Brazier et al., 1997] Brazier, F. M. T., Dunin-Keplicz, B. M., Jennings, N. R.,
and Treur, J. (1997). DESIRE: Modelling Multi-Agent Systems in a Com-
positional Formal Framework. International Journal of Cooperative Infor-
mation Systems, 6(1), pages 67–94.

www.manaraa.com

456 Methodologies and Software Engineering for Agent Systems

[Brazier et al., 1999] Brazier, F. M. T., Jonker, C. M., Jungen, F. J., and Treur,
J. (1999). Distributed Scheduling to Support a Call Centre: A Co-operative
Multi-Agent Approach. Applied Artificial Intelligence Journal, 13.

[Brazier et al., 2000] Brazier, F. M. T., Jonker, C. M., and Treur, J. (2000).
Compositional Design and Reuse of a Generic Agent Model. International
Journal of Cooperative Information Systems, 9(3), pages 171–207.

[Brazier et al., 2002] Brazier, F. M. T., Jonker, C. M., and Treur, J. (2002).
Principles of Component-Based Design of Intelligent Agents. Data and
Knowledge Engineering, 41.

[Bresciani et al., 2001] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F.,
and Mylopoulos, J. (2001). A Knowledge Level Software Engineering
Methodology for Agent Oriented Programming. Proceedings of the In-
ternational Conference on Autonomous Agents, pages 648–655, Montreal,
CA.

[Bresciani et al., 2002] Bresciani, P., Giorgini, P., Giunchiglia, F, Mylopou-
los, J., and Perini, A. (2002). Tropos: An Agent-Oriented Software Devel-
opment Methodology. Technical Report DIT-02-0015, University of Trento.

[Brézillon, 2003] Brézillon, P. (2003). Focusing on Context in Human-
Centered Computing. IEEE Intelligent Systems, 18(3).

[Brueckner, 2000] Brueckner, S. A. (2000). Return from the Ant: Synthetic
Ecosystems for Manufacturing Control. Dr.rer.nat. Thesis. Humboldt Uni-
versity.

[Brueckner and Parunak, 2002] Brueckner, S. A., and Parunak, H. V. D.
(2002). Swarming Agents for Distributed Pattern Detection and Classifi-
cation. Proceedings of Workshop on Ubiquitous Computing, AAMAS 2002,
Bologna, Italy.

[Brueckner and Parunak, 2003] Brueckner, S. A., and Parunak, H. V. D.
(2003). Information-Driven Phase Changes in Multi-Agent Coordina-
tion. Proceedings of Autonomous Agents and Multi-Agent Systems (AAMAS
2003), pages 950–951.

[Bryson, 2001] Bryson, J. J. (2001). Intelligence by Design: Principles of
Modularity and Coordination for Engineering Complex Adaptive Agents.
Ph.D. Thesis, MIT.

[Bryson et al., 2002] Bryson, K., Luck, M., Joy, M., and Jones, D. (2002).
Agent Interaction for Bioinformatics Data Management. Applied Artificial
Intelligence.

www.manaraa.com

References 457

[Burmeister, 1996] Burmeister, B. (1996). Models and Methodology for
Agent-Oriented Analysis and Design. Working Notes of the KI’96 Work-
shop on Agent Oriented Programming and Distributed Systems.

[Burrafato and Cossentino, 2002] Burrafato, P., and Cossentino, M. (2002).
Designing a Multi-Agent Solution for a Bookstore with the PASSI Method-
ology. Proceedings of the International Bi-Conference Workshop on
Agent-Oriented Information Systems (AOIS-2002), Toronto, CA.

[Busetta et al., 1998] Busetta, P., Rönnquist, R., Hodgson, A.,and Lucas, A.
(1998). JACK Intelligent Agents – Components for Intelligent Agents in
Java. Technical Report, Agent Oriented Software Pty. Ltd. Available at
http://www.agent–software.com.

[Busetta et al., 2001] Busetta, P., Carman, M., Serafini, L., Stockinger, K., and
Zini, F. (2001). Grid Query Optimisation in the Data Grid. Technical Report
IRST 0109-01, Istituto Trentino di Cultura.

[Bush et al., 2001] Bush, G., Cranefield, S., and Purvis, M. (2001). The Styx
Agent Methodology. The Information Science Discussion Paper Series
2001/02, University of Otago, New Zealand.

[Busi et al., 2001] Busi, N., Ciancarini, P., Gorrieri, R., and Zavattaro, G.
(2001). Coordination Models: A Guided Tour. Omicini, A., Zambonelli,
F., Klusch, M., and Tolksdorf, R. (Eds.) Coordination of Internet Agents:
Models, Technologies, and Applications, pages 6–24.

[Bussmann, 1998] Bussmann, S. (1998). Agent-Oriented Programming of
Manifacturing Control Tasks. Proceedings of the International Con-
ference on Multi-Agent Systems, pages 57–63.

[Butler et al.,2001] Butler, Z., Byrnes, S., and Rus, D. (2001). Distributed
Motion Planning for Modular Robots with Unit-Compressible Modules.
Proceedings of the International Conference on Intelligent Robots and Sys-
tems.

[Butler et al., 2002] Butler, Z., Kotay, K., Rus, D., and Tomita, K. (2002).
Generic Decentralized Control for a Class of Self-Reconfigurable Robots.
Proceedings of the IEEE International Conference on Robotics and Au-
tomation.

[Buyya et al., 2001] Buyya, R., Giddy, J., and Abramson, D. (2001). An Econ-
omy Grid Architecture for Service-Oriented Grid Computing. Proceedings
of the IEEE International Heterogeneous Computing Workshop (HCW
2001), San Francisco, USA.

www.manaraa.com

458 Methodologies and Software Engineering for Agent Systems

[Caire et al., 2001a] Caire, G., Chainho, P., Evans, R., Garijo, F., Gomez Sanz,
J., Kearney, P., Leal, F., Massonet, P., Pavon, J., and Stark, J. (2001a).
Methodology for Agent Oriented Software Engineering. EURESCOM
Project P907 Deliverable 3.

[Caire et al., 2001b] Caire, G., Leal, F., Chainho, P., Evans, R., Garijo, F.,
Gomez-Sanz, J. J., Pavon, J., Kerney, P., Stark, J., and Massonet, P. (2001b).
Agent Oriented Analysis using MESSAGE/UML. Weiss, G., Cianciarini,
P., and Wooldridge, M. (Eds.) Agent-Oriented Software Engineering II,
Springer-Verlag.

[Camazine et al., 2001] Camazine, S., Deneubourg, J.-L., Franks, N. R.,
Sneyd, J., Theraulaz, G., and Bonabeau, E. (2001). Self-Organization in
Biological Systems. Princeton University Press.

[Camps et al., 1998] Camps, V., Gleizes, M.-P., and Glize, P. (1998). Une
Théorie des Phénomènes Globaux Fondée sur des Interactions Locales.
Actes des Sixième Journées Francophones IAD&SMA (JFIADSMA98), Edi-
tions Hermès.

[Capera et al., 2003a] Capera, D., Georgé, J.-P., Gleizes, M.-P., and Glize, P.
(2003a). The AMAS Theory for Complex Problem Solving based on Self-
Organizing Cooperative Agents. Proceedings of the International Work-
shop on Theory and Practice of Open Computational Systems (TAPOCS),
pages 383–388.

[Capera et al., 2003b] Capera, D., Georgé, J.-P., Gleizes, M.-P., and Glize, P.
(2003b). Emergence of organisations, emergence of functions. Proceedings
of the FAISB’03 Symposium on Adaptive Agents and Multi-Agent Systems.

[Carriero and Gelernter, 1989] Carriero, N., and Gelernter, D. (1989). Linda
in Context. Communications of the ACM, 32(4), pages 444–458.

[Castelfranchi, 1998] Castelfranchi, C. (1998). Modelling Social Action for
AI Agents. Artificial Intelligence, 103(1).

[Castelfranchi, 2000] Castelfranchi, C. (2000). Founding Agent’s ‘Autonomy’
on Dependence Theory. Proceedings of European Conference on Arti-
ficial Intelligence, pages 353–357, Berlin, Germany.

[Castelfranchi and Falcone, 1998] Castelfranchi, C., and Falcone, R. (1998).
Towards a Theory of Delegation for Agent-Based Systems. Robotics and
Autonomous Systems, 24:141.

[Castro et al., 2001] Castro, J., Kolp, M., and Mylopoulos, J. (2001). A
requirements-driven development methodology. Dittrich, K.R., Geppert, A.

www.manaraa.com

References 459

and Norrie, M.C., editors, Proceedings of the 13th International Conference
on Advanced Information Systems Engineering (CAiSE’01), volume 2068,
pages 108–123, Interlaken, Switzerland. Springer-Verlag.

[Castro et al., 2002] Castro, J., Kolp, M., and Mylopoulos, J. (2002). To-
wards Requirements-Driven Information Systems Engineering: The Tropos
Project. Information Systems. Elsevier.

[Cernuzzi and Rossi, 2002] Cernuzzi, L., and Rossi, G. (2002). On the Eval-
uation of Agent Oriented Modeling Methods. Proceedings of the OOPSLA
2002 Workshop on Agent-Oriented Methodologies, pages 21–30, Seattle,
USA.

[Chen and Finin, 2002] Chen, H., and Finin, T. (2002). Beyond Distributed
AI – Agent Teamwork in Ubiquitous Computing. Proceedings of the
International Workshop on Ubiquitous Agents on Embedded, Wearable, and
Mobile Devices, Bologna, Italy.

[Cheung et al., 1997] Cheung, P., Berlin, A., Biegelsen, D. K., and Jackson,
W. B. (1997). Batch Fabrication of Pneumatic Valve Arrays by Combining
MEMS with Printed Circuit Board Technology. Proceedings of the Sympo-
sium on Micro-Mechanical Systems.

[Chopra and Singh, 2003] Chopra, A., and Singh, M. P. (2003). Nonmono-
tonic Commitment Machines. Dignum, F. (Ed.) Proceedings of the 2003
AAMAS Workshop on Agent Communication Languages, Springer-Verlag.

[Chung et al., 2000] Chung, L., Nixon, B. A., Yu, E., and Mylopoulos, J.
(2000). Non-Functional Requirements in Software Engineering. Kluwer
Academic Publishers.

[Ciancarini et al., 2000] Ciancarini, P., Omicini, A., and Zambonelli, F.
(2000). Multiagent System Engineering: The Coordination Viewpoint. Jen-
nings, N. R., and Lespérance, Y. (Eds.) Intelligent Agents VI. Agent Theo-
ries, Architectures, and Languages, pages 250–259. Springer-Verlag.

[Cimatti et al., 2002] Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia,
F., Pistore, M., Roveri, M., Sebastiani, R., and Tacchella, A. (2002).
NuSMV 2: An Opensource Tool for Symbolic Model Checking. Computer
Aided Verification, Springer-Verlag.

[Clarke et al., 1999] Clarke, E., Grumberg, O., and Peled, D. (1999). Model
Checking. The MIT Press.

[Clarke et al., 2001] Clarke, D., Elien, J.-E., Ellison, C., Fredette, M., Morcos,
A., and Rivest, R. L. (2001). Certificate Chain Discovery in SPKI/SDSI.
Journal of Computer Security, 9(4), pages 285–338.

www.manaraa.com

460 Methodologies and Software Engineering for Agent Systems

[Clearwater, 1996] Clearwater, S. H. (Ed.) (1996). Market-Based Control. A
Paradigm for Distributed Resource Allocation. World Scientific Publishing.

[Clements, 1996] Clements, P. C. (1996). A Survey of Architecture Descrip-
tion Languages. Proceedings of the International Workshop on Software
Specification and Design.

[Clough, 2003] Clough, B. (2003). Emergent Behavior (Swarming): Tool Kit
for Building UAV Autonomy. Proceedings of Swarming: Network Enabled
C4ISR, Tysons Corner, VA.

[Coffman et al., 1971] Coffman, E. G., Elphick, M., and Shoshani, A. (1971).
System Deadlocks. ACM Computing Surveys, 3(2), pages 67–78.

[Cohen, 1988] Cohen, J. (1988). A View of the Origins and Development of
Prolog. Communications of the ACM, 31(1), pages 26–36.

[Cohen and Levesque, 1990] Cohen, P. R., and Levesque, H. J. (1990). Inten-
tion is Choice with Commitment. Artificial Intelligence, 42, pages 213–261.

[Cohen and Levesque, 1991] Cohen, P. R., and Levesque, H. J. (1991). Team-
work. Nous, 25(4), pages 487–512.

[Coleman et al., 1994] Coleman, D., Arnold, P., Bodoff, S., Dollin, D.,
Gilchrist, H., Hayes, F., and Jeremas, P. (1994). Object-Oriented Devel-
opment: The FUSION Method. Prentice-Hall International.

[Collinot et al., 1996] Collinot, A., Drogoul, A., and Benhamou, P. (1996).
Agent Oriented Design of a Soccer Robot Team. Proceedings of ICMAS’96.

[Collis and Ndumu, 1999] Collis, J. C., and Ndumu, D. T. (1999). The Role
Modelling Guide. Applied Research and Technology, BT Labs.

[Conte et al., 1998] Conte, R., Gilbert, N., and Simao Sichman, J. (1998).
MAS and Social Simulation: A Suitable Commitment. Sichman, J. S.,
Conte, R., and Gilbert, N. (Eds.) Proceedings of the International Work-
shop on Multi Agent Based Simulation, pages 1–9. Springer-Verlag.

[Conte and Sichman, 1995] Conte, R., and Sichman, J. S. (1995). Depnet:
How to Benefit from Social Dependence. Journal of Mathematical Sociol-
ogy, 20(2-3), pages 161–177.

[Coore, 1999] Coore, D. (1999). Botanical Computing: A Developmental Ap-
proach to Generating Interconnect Topologies on an Amorphous Computer.
Ph.D. Thesis, MIT.

www.manaraa.com

References 461

[Cossentino, 2001] Cossentino, M. (2001). Different Perspectives in Design-
ing Multi-Agent System. Proceedings of the Workshop on Agent Technology
and Software Engineering, Erfurt, Germany.

[Cossentino and Potts, 2002] Cossentino, M., and Potts, C. (2002). A CASE
Tool Supported Methodology for the Design of Multi-Agent Systems. Pro-
ceedings of the 2002 International Conference on Software Engineering Re-
search and Practice, Las Vegas, USA.

[Cossentino et al., 2003] Cossentino, M., Hopmans, G., and Odell, J. (2003).
FIPA standardization Activities in the Software Engineering Area. Proceed-
ings of the 2003 Workshop on Objects and Agents (WOA03), Cagliari, Italy.

[Cox et al., 2001] Cox, S. J., Fairman, M. J., Xue, G., Wason, J. L., and Keane,
A. J. (2001). The Grid: Computational and Data Resource Sharing in En-
gineering Optimisation and Design Search. Proceedings of the 2001 ICPP
Workshops, pages 207–212.

[Crutchfield, 1994] Crutchfield, J. P. (1994). The Calculi of Emergence: Com-
putation, Dynamics, and Induction. Physica D, 75, pages 11–54.

[Curbera et al., 2002a] Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi,
N., and Weerawarana, S. (2002a). Unraveling the Web Services Web. IEEE
Internet Computing, 6, pages 86–93.

[Curbera et al., 2002b] Curbera, F., Goland, Y., Klein, J., Leymann, F., Roller,
D., Thatte, S., and Weerawarana, S. (2002b). Business Process Execu-
tion Language for Web Services. Available at http://www.ibm.com/

developerworks/library/ws–bpel.

[Dam, 2003] Dam, K. H. (2003). Evaluating Agent-Oriented Software Engi-
neering Methodologies. Master’s Thesis, RMIT University.

[Dam and Winikoff, 2003] Dam, K. H., and Winikoff, M. (2003). Comparing
Agent-Oriented Methodologies. Proceedings of the International Bi-
Conference Workshop on Agent-Oriented Information Systems.

[Dardenne et al., 1993] Dardenne, A., van Lamsweerde, A., and Fickas, S.
(1993). Goal-Directed Requirements Acquisition. Science of Computer
Programming, 20(1–2), pages 3–50.

[Darimont et al., 1997] Darimont, R., Delor, E., Massonet, P., and van Lam-
sweerde, A. (1997). GRAIL/KAOS: An Environment for Goal-Driven Re-
quirements Engineering. Proceedings of the International Conference
on Software Engineering, pages 612–613.

www.manaraa.com

462 Methodologies and Software Engineering for Agent Systems

[Dastani et al., 2003] Dastani, M., van Riemsdijk, B., Dignum, F., and Meyer,
J. J. (2003). A Programming Language for Cognitive Agents: Goal Di-
rected 3APL. Proceedings of the Workshop on Programming Multiagent
Systems: Languages, Frameworks, Techniques, and Tools (ProMAS03).

[Davis and Smith, 1983] Davis, R., and Smith, R. G. (1983). Negotiation as a
Metaphor for Distributed Problem-Solving. Artificial Intelligence, 20, pages
63–109.

[Day and Lawrence, 2000] Day, S. J., and Lawrence, P. A. (2000). Measuring
Dimensions: The Regulation of Size and Shape. Development, 127, 2977–
2987.

[Dayal et al., 2001] Umeshwar, D., Meichun, H., and Ladin, R. (2001). Busi-
ness Process Coordination: State of the Art, Trends and Open Issues. Apers,
P. M. G., Atzeni, P., Ceri, S., Paraboschi, S., Ramamohanarao, K., and Snod-
grass, R. T. (Eds.) Proceedings of the International Conference on Very
Large Data Bases (VLDB 2001), pages 3–13.

[De Giacomo et al., 2000] De Giacomo, G., Lesperance, Y., and Levesque,
H. J. (2000). Congolog, A Concrrent Programming Language based on
the Situation Calculus. Artificial Intelligence, 121, pages 109–169.

[De Roure et al., 2003] De Roure, D., Jennings, N. R., and Shadbolt, N.
(2003). The Semantic Grid: A Future e-Science Infrastructure. Berman,
F., Fox, G., and Hey, A. J. G. (Eds.) Grid Computing: Making the Global
Infrastructure a Reality, pages 437–470, John Wiley & Sons.

[Debenham and Henderson-Sellers, 2002] Debenham, J., and Henderson-
Sellers, B. (2002). Full Lifecycle Methodologies for Agent-Oriented Sys-
tems – The Extended OPEN Process Framework. Proceedings of Agent-
Oriented Information Systems (AOIS-2002), Toronto, CA.

[Decker, 1995] Decker, K. S. (1995). Environment Centered Analysis and
Design of Coordination Mechanisms. Ph.D. Thesis, University of Mas-
sachusetts.

[Decker, 1996a] Decker, K. S. (1996a). TÆMS: A Framework for Environ-
ment Centered Analysis and Design of Coordination Mechanisms. O’Hare,
G. M. P., and Jennings, N. R., (Eds.) Foundations of Distributed Artificial
Intelligence, pages 429–448, John Wiley & Sons.

[Decker, 1996b] Decker, K. S. (1996b). Task Environment Centered Simula-
tion. Simulating Organizations: Computational Models of Institutions and
Groups. AAAI Press/The MIT Press.

www.manaraa.com

References 463

[Decker et al., 1989] Decker, K. S., Durfee, E. H., and Lesser, V. R. (1989).
Evaluating Research in Cooperative Distributed Problem Solving. Huhns,
M. N., and Gasser, L. (Eds.) Distributed Artificial Intelligence, Volume 2,
pages 487–519. Pitman/Morgan Kaufmann.

[Decker et al., 1997] Decker, K. S., Sycara, K., and Williamson, M. (1997).
Middle-Agents for the Internet. Proceedings of IJCAI’97.

[Decker et al., 2001] Decker, K. S., Zheng, X., and Schmidt, C. (2001). A
Multi-Agent System for Automated Genetic Annotation. Proceedings of
the ACM International Conference on Autonomous Agents, Montreal,
Canada.

[DeLoach, 2001] DeLoach, S. A. (2001). Analysis and Design using MaSE
and agenTool. Proceedings of the Midwest Artificial Intelligence and
Cognitive Science Conferece (MAICS), Miami University Press.

[DeLoach, 2002] DeLoach, S. A. (2002). Modeling Organizational Rules in
the Multiagent Systems Engineering Methodology. Proceedings of the
Canadian Conference on Artificial Intelligence.

[DeLoach and Wood, 2001] DeLoach, S. A., and Wood, M. (2001). Develop-
ing Multiagent Systems with agentTool. Castelfranchi, C., and Lesperance,
Y. (Eds.) Intelligent Agents VII., pages 46–60, Springer-Verlag.

[DeLoach et al., 2001] DeLoach, S. A., Wood, M. F, and Sparkman, C. H.
(2001). Multiagent Systems Engineering. International Journal of Software
Engineering and Knowledge Engineering, 11(3), pages 231–258.

[DeLoach et al., 2003] DeLoach, S. A., Matson, E. T., and Li, Y. (2003).
Exploiting Agent Oriented Software Engineering in Cooperative Robotics
Search and Rescue. International Journal of Pattern Recognition and Arti-
ficial Intelligence.

[Demazeau, 1995] Demazeau, Y. (1995). From Cognitive Interactions to Col-
lective Behaviour in Agent-Based Systems. Proceedings of the European
Conference on Cognitive Science, pages 117–132, Saint-Malo, France.

[Denti et al., 2002] Denti, E., Omicini, A., and Ricci, A. (2002). Coordination
Tools for MAS Development and Deployment. Applied Artificial Intelli-
gence, 16(9-10), pages 721–752.

[Depke et al., 2001] Depke, R., Heckel, R., and Kuster, J. M. (2001). Improv-
ing the Agent-Oriented Modeling Process by Roles. Proceedings of the
International Conference on Autonomous Agents, pages 640–647.

www.manaraa.com

464 Methodologies and Software Engineering for Agent Systems

[Devedzic, 1999] Devedzic, V. (1999). A Survey of Modern Knowledge Mod-
eling Techniques. Expert Systems with Applications, 17(275).

[Devlin, 2003] Devlin, K. (2003). Why Universities Require Computer Sci-
ence Students to take Math. Communications of the ACM, 46(9), pages
37–39.

[Dey, 2001] Dey, A. K. (2001). Evaluation of Ubiquitous Computing Sys-
tems: Evaluating the Predictability of Systems. Abowd, G. D., Brumitt, B.,
and Shafer, S. (Eds.) Proceedings of Evaluation Methods for Ubiquitous
Computing Workshop, Springer-Verlag.

[Dietterich, 1998] Dietterich, T. G. (1998). Machine-Learning Research: Four
Current Directions. AI Magazine, 18(4), pages 97–136.

[DiLeo et al., 2002] DiLeo, J., Jacobs, T., and DeLoach, S. (2002). Integrat-
ing Ontologies into Multiagent Systems Engineering. Proceedings of the

International Bi-Conference Workshop on Agent-Oriented Information
Systems.

[Do et al., 2003] Do, T., Kolp, M., and Pirotte, A. (2003). Social Patterns for
Designing Multi-agent Systems. Proceedings of the International Con-
ference on Software Engineering and Knowledge Engineering (SEKE’03).

[Dorigo and Di Caro, 1999] Dorigo, M., and Di Caro, G. (1999). The Ant
Colony Optimization Meta-Heuristic. Corne, D., Dorigo, M., and Glover,
F. (Eds.) New Ideas in Optimization, McGraw-Hill.

[Dorigo et al., 1996] Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The
Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans-
actions on Systems, Man, and Cybernetics, 26(1), pages 1–13.

[Drogoul and Zucker, 1998] Drogoul, A., and Zucker, J. (1998). Method-
ological Issues for Designing Multi-Agent Systems with Machine Learning
Techniques: Capitalizing Experiences from the Robocup Challenge. Tech-
nical Report LIP6 1998/041, Laboratoire d’Informatique de Paris 6.

[Du Bois, 1997] Du Bois, P. (1997). The ALBERT II Reference Manual. Tech-
nical Report RR-97-002, University of Namur.

[Dubois, 1998] Dubois, P., and Heymans E. (1998). Scenario-Based Tech-
niques for Supporting the Elaboration and the Validation of Formal Require-
ments. Technical Report CREWS 98-15, Universite de Namur.

[Dubois et al., 1994] Dubois, E., Du Bois, P., Dubru, F., and Petit, M. (1994).
Agent-Oriented Requirements Engineering: A Case Study using the AL-
BERT Language. Proceedings of the International Working Conference

www.manaraa.com

References 465

on Dynamic Modelling and Information Systems (DYNMOD’94), pages
205–238.

[Dulay et al., 2001] Dulay, N., Damianou, N., Lupu, E., and Sloman, M.
(2001). A Policy Language for the Management of Distributed Agents.
Wooldridge, M. J., Weiss, G., and Ciancarini, P. (Eds.) Agent-Oriented Soft-
ware Engineering II, pages 84–100, Springer-Verlag.

[Durfee and Lesser, 1991] Durfee, E. H., and Lesser, V. R. (1991). Partial
Global Planning: A Coordination Framework for Distributed Hypothesis
Formation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5),
pages 1167–1183.

[Durfee et al., 1989] Durfee, E. H., Lesser, V. R., and Corkill, D. D. (1989).
Trends in Cooperative Distributed Problem Solving. IEEE Transactions on
Knowledge and Data Engineering, 1(1), pages 63–83.

[Edmonds, 1998] Edmonds, B. (1998). Social Embeddedness and Agent De-
velopment. Proceedings of UKMAS’98.

[Edmonds, 2003a] Edmonds, B. (2003a). Simulation and Complexity – How
They can Relate. Feldmann, V., and Mühlfeld, K. (Eds.) Virtual Worlds of
Precision, Lit Verlag.

[Edmonds, 2003b] Edmonds, B. (2003b). Against: A Priori Theory, For: De-
scriptively Adequate Computational Modelling. The Crisis in Economics:
The Post-Autistic Economics Movement: The first 600 days, pages 175–179,
Routledge.

[Edwards, 2000] Edwards, S. J. A. (2000). Swarming on the Battlefield: Past,
Present, and Future. Technical Report MR-1100-OSD, RAND.

[Edwards, 2003] Edwards, S. J. A. (2003). Military History of Swarming.
Proceedings of Swarming: Network Enabled C4ISR, Tysons Corner, VA.

[Edwards and Grinter, 2001] Edwards, W. K., and Grinter, R. E. (2001). At
Home with Ubiquitous Computing: Seven Challenges. Abowd, G. D., Bru-
mitt, B., and Shafer, S. (Eds.) Proceedings of the International Confer-
ence on Ubiquitous Computing (UBICOMP’2001), Springer-Verlag.

[Ekudden et al., 2001] Ekudden, E., Horn, H., Melander, M., and Olin, J.
(2001). On-Demand Mobile Media – A Rich Service Experience for Mobile
Users. Ericsson Review, The Telecommunications Technology Journal, 4.

[Elammari and Lalonde, 1999] Elammari, M., and Lalonde, W. (1999). An
Agent-Oriented Methodology: High-Level and Intermediate Models. Wag-
ner, G., and Yu, E. (Eds.) Proceedings of the International Workshop on
Agent-Oriented Information Systems.

www.manaraa.com

466 Methodologies and Software Engineering for Agent Systems

[Engeström et al., 1997] Engeström, Y., Brown, K., Christopher, C. L., and
Gregory, J. (1997). Coordination, Cooperation, and Communication in the
Courts: Expansive Transitions in Legal Work. Cole, M., Engeström, Y.,
and Vasquez, O. (Eds.) Mind, Culture, and Activity, Cambridge University
Press.

[Esler et al., 1999] Esler, M., Hightower, J., Anderson, T., and Borriello, G.
(1999). Next Century Challenges: Data-Centric Networking for Invisible
Computing – The Portolano Project at the University of Washington. Pro-
ceedings of the ACM International Conference on Mobile Computing (Mo-
biCOM’1999), Seattle, USA.

[Esteva et al., 2002] Esteva, M., de la Cruz, D., and Sierra, C. (2002). Islander:
An Electronic Institutions Editor. Proceedings of the International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 1045–
1052.

[Fallah-Seghrouchni a nd Suna, 2003] Fallah-Seghrouchni, A., and Suna, A.
(2003). A Programming Language for Autonomous and Mobile Agents.
Proceedings of IAT 2003.

[Fankhauser et al., 1991] Fankhauser, P., Kracker, M., and Neuhold, E. J.
(1991). Semantic vs. Structural Resemblance of Classes. ACM SIGMOD
RECORD 20(4), pages 59–63.

[Fano and Gershman, 2002] Fano, A., and Gershman, A. (2002). The Future
of Business Services in the Age of Ubiquitous Computing. Communications
of the ACM, 45(12).

[Fensel and Motta, 2001] Fensel, D., and Motta, E. (2001). Structured Devel-
opment of Problem Solving Methods. Knowledge and Data Engineering,
13(6), pages 913–932.

[Fenster et al., 1995] Fenster, M., Kraus, S., and Rosenschein, J. S. (1995).
Coordination without Communication: Experimental Validation of Focal
Point Techniques. Proceedings of International Conference on Multi-Agent
Systems (ICMAS’95), pages 102–108, San Francisco, USA.

[Ferber, 1999] Ferber, J. (1999). Multi-Agent Systems. Addison-Wesley.

[Ferber and Gutknecht, 1998] Ferber, J., and Gutknecht, O. (1998). A Meta-
Model for the Analysis and Design of Organizations in Multi-Agent Sys-
tems. Proceedings of the International Conference on Multi-Agent Sys-
tems (ICMAS-98), pages 128–135.

www.manaraa.com

References 467

[Ferguson, 1992] Ferguson, I. A. (1992). TouringMachines: An Architecture
for Dynamic, Rational, Mobile Agents. Ph.D. Thesis, University of Cam-
bridge.

[Fikes and Nilsson, 1971] Fikes, R., and Nilsson, J. (1971). STRIPS: A New
Approach to the Application of Theorem Proving to Problem Solving. Ar-
tificial Intelligence, 2(3–4).

[Fisher, 1994] Fisher, M. (1994). A Survey of Concurrent METATEM – The
Language and its Applications. Gabbay, D. M., and Ohlbach, H. J. (Eds.)
Proceedings of the Intemational Conference on Temporal Logic, pages
480–505, Springer-Verlag.

[Fisher, 1995] Fisher, M. (1995). Representing and Executing Agent-Based
Systems. Wooldridge, M., and Jennings, N. R. (Eds.) Intelligent Agents:
Theories, Architectures, and Languages, pages 307–323. Springer-Verlag.

[Fisher and Wooldridge, 1997] Fisher, M., and Wooldridge, M. J. (1997) On
the Formal Specification and Verification of Multi-Agent Systems. Interna-
tional Journal of Cooperative Information Systems, 6:1, pages 37–65.

[Fornara and Colombetti, 2002] Fornara, N., and Colombetti, M. (2002). Op-
erational Specification of a Commitment-Based Agent Communication
Language. Proceedings of the International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 535–542.

[Forrest, 1991] Forrest, S. (Ed.) (1991). Emergent Computation: Self-
Organizing, Collective, and Cooperative Phenomena in Natural and Arti-
ficial Computing Networks. Special issue of Physica D, The MIT Press.

[Foster, 2002] Foster, I. (2002). What is the Grid? A Three Point Checklist.
Available at http://www–fp.mcs.anl.gov/~foster.

[Foster and Kesselman, 1999] Foster, I., and Kesselman, C. (Eds.) (1999). The
Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufman.

[Foster etal., 2001] Foster, I., Kesselman, C., and Tuecke, S. (2001). The
Anatomy of the Grid. Enabling Scalable Virtual Organizations. Interna-
tional Journal of Supercomputer Applications.

[Foster et al., 2002] Foster, I., Kesselman, C., Nick, J., and Tucke, S. (2002).
The Physiology of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration. Open Grid Service Infrastructure WG, Global
Grid Forum.

[Fox and Gruninger, 1998] Fox, M. S., and Gruninger, M. (1998). Enterprise
Modelling. AI Magazine, 19(3), pages 109–121.

www.manaraa.com

468 Methodologies and Software Engineering for Agent Systems

[Fredriksson and Gustavsson, 2003] Fredriksson, M., and Gustavsson, R.
(2003). Articulation of an Open Computational System for Network-
Centric Warfare. Bubenko Jr., J. (Ed.) Conference for the Promotion of
Research in Information Technology at New Universities and at University
Colleges (ITL), Visby, Sweden.

[Fredriksson et al., 2003] Fredriksson, M., Gustavsson, R., and Ricci, A.
(2003). Sustainable Coordination. Klusch, M., Bergamaschi, S., Edwards,
P., and Petta, P. (Eds.) Intelligent Information Agents: An AgentLink Per-
spective, pages 203–233. Springer-Verlag.

[Friedman-Hill, 2003] Friedman-Hill, E. (2003). Java Expert System Shell
(JESS). Available at http://herzberg.ca.sandia.gov/jess.

[Furmento et al., 2001] Furmento, N., Newhouse, S., and Darlington, J.
(2001). Building Computational Communities from Federated Resources.
Proceedings of the International Euro-Par Conference (Euro-Par 2001),
pages 855–863.

[Fuxman, 2001] Fuxman, A. (2001). Formal Analysis of Early Requirements
Specifications. Master’s Thesis, University of Toronto.

[Fuxman et al., 2001] Fuxman, A., Pistore, M., Mylopoulos, J., and Traverso,
P. (2001). Model Checking Early Requirements Specifications in Tropos.
Proceedinfgs of the IEEE International Symposium on Requirements Engi-
neering, pages 174–181, Toronto, CA.

[Fuxman et al., 2003] Fuxman, A., Liu, L., Pistore, M., Roveri, M., and My-
lopoulos, J. (2003). Specifying and Analyzing Early Requirements in Tro-
pos: Some Experimental Results. Proceedings of the IEEE Interna-
tional Requirements Engineering Conference, Monterey Bay, USA.

[Gamma et al., 1995] Gamma, E., Helm, R., Johnson, J., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley.

[Garcia-Molina and Germano, 1984] Garcia-Molina, H., Germano, F. (1984).
Debugging a Distributed Computer System. IEEE Transactions on Software
Engineering, 10(2), pages 210–219.

[Garijo et al., 1998] Garijo, F., Tous, J., Matias, J. M., Corley, S., and Tesse-
laar, M. (1998). Development of a Multi-Agent System for Cooperative
Work with Network Negotiation Capabilities. Albayrak, S. (Ed.) Intelli-
gent Agents for Telecommunication Applications, pages 204–219, Springer-
Verlag.

www.manaraa.com

References 469

[Garijo et al, 2001] Garijo, F., Gómez-Sanz, J., Pavón, J., Massonet, P. Multi-
Agent System Organisation. An Engineering Perspective. Proceedings of
MAAMAW 2001, Springer-Verlag.

[Gasser, 2001] Gasser, L. (2001). MAS Infrastructure Definitions, Needs,
Prospects. Wagner, T., and Rana, O. (Eds.) Infrastructure for Agents, Multi-
Agent Systems, and Scalable Multi-Agent Systems, pages 1–11. Springer-
Verlag.

[Gasser and Briot, 1992] Gasser, L., and Briot, J.-P. (1992). Distributed Ar-
tificial Intelligence: Theory and Praxis. Object-Oriented Concurrent Pro-
gramming and Distributed Artificial Intelligence, pages 81–108. Kluwer
Academic Publishers.

[Gelernter and Carriero, 1992] Gelernter, D., and Carriero, N. (1992). Coor-
dination Languages and Their Significance, Communications of the ACM,
25(2), pages 97–107.

[Genesereth and Ketchpel, 1997] Genesereth, M. R., and Ketchpel, S. P.
(1997). Software Agents. Communications of the ACM, 37(7).

[Genesereth and Nilsson, 1987] Genesereth, M. R., and Nilsson, N. J. (1987).
Logical Foundations of Artificial Intelligence. Morgan Kaufmann Publisher.

[Genesereth et al., 1986] Genesereth, M. R., Ginsburg, M., and Rosenschein,
J. S. (1986). Cooperation without Communication. Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI’86), pages 51–57, AAAI
Press.

[Georgé et al., 2003] Georgé, J.-P., Gleizes, M.-P., Glize, P., and Régis, C.
(2003). Real-Time Simulation for Flood Forecast: An Adaptive Multi-
Agent System STAFF. Kazakov, D., Kudenko, D., and Alonso, E. (Eds.)
Proceedings of the AISB’03 Symposium on Adaptive Agents and Multi-
Agent Systems (AAMAS’03), pages 109–114.

[Gervais, 2003] Gervais, M.-P. (2003). ODAC: An Agent-Oriented Method-
ology based on ODP. Journal of Autonomous Agents and Multi-Agent Sys-
tems, 7(3), pages 199–228.

[Gervais and Muscutariu, 2001] Gervais, M.-P., and Muscutariu, F. (2001).
Towards an ADL for Designing Agent-Based Systems. Wooldridge, M. J.,
Weiss, G., and Cianciarini, P. (Eds.) Agent-Oriented Software Engineering
II, pages 263–277. Springer-Verlag.

[Giampapa and Sycara, 2002] Giampapa, J. A., and Sycara, K. (2002). Team-
Oriented Agent Coordination in the RETSINA Multi-Agent System. Tech-
nical Report CMU-RI-TR-02-34, Carnegie Mellon University.

www.manaraa.com

470 Methodologies and Software Engineering for Agent Systems

[Gilber, 1995] Gilbert, G. N., 1995. Emergence in Social Simulation. Gilbert,
G. N., and Conte, R. (Eds.) Artificial Societies: The Computer Simulation
of Social Life, UCL Press.

[Giorgini et al., 2002] Giorgini, P., Nicchiarelli, E., Mylopoulos, J., and Se-
bastiani, R. (2002). Reasoning with Goal Models. Proceedings of the Inter-
national Conference of Conceptual Modeling, Springer-Verlag.

[Giorgini et al., 2003] Giorgini, P., Mueller, J., and Odell, J. (Eds.) (2003).
Agent-Oriented Software Engineering III, Springer-Verlag.

[Giunchiglia et al., 2002] Giunchiglia, F., Mylopoulos, J., and Perini, A.
(2002). The Tropos Software Development Methodology: Processes, Mod-
els and Diagrams. Proceedings of Agent-Oriented Software Engineering,
Springer-Verlag.

[Giunchiglia et al., 2003] Giunchiglia, F., Odell, J., and Weiss, G. (Eds.)
(2003). Agent-Oriented Software Engineering IV, Springer-Verlag.

[Glaser, 1996] Glaser, N. (1996). The CoMoMAS Methodology and Envi-
ronment for Multi-Agent System Development. Zhang, C., and Lukose, D.
(Eds.) Multi-Agent Systems Methodologies and Applications, pages 1–16.
Springer-Verlag.

[Gleizes et al., 1999] Gleizes, P.-P., Camps, V., and Glize, P. (1999). A The-
ory of Emergent Computation Based on Cooperative Self-Oganization for
Adaptive Artificial Systems. Proceedings of the European Congress of
Systems Science, Valencia, Spain.

[Goldstein, 1999] Goldstein, J. (1999). Emergence as a Construct: History
and Issues. Emergence, 1-1, pages 49–72.

[Gomez-Sanz and Fuentes, 2002] Gomez-Sanz, J., and Fuentes, R. (2002).
Agent Oriented System Engineering with INGENIAS. Proceedings of the

Iberoamerican Workshop on Multi-Agent Systems.

[Gomez-Sanz and Pavon, 2003] Gomez-Sanz, J., and Pavon, J. (2003). Agent
Oriented Software Engineering with INGENIAS. Marík, V., Müller, J., and
Pechoucek, M. (Eds.) Multi-Agent Systems and Applications III, pages 394–
403, Springer-Verlag.

[Gomez-Sanz et al., 2002] Gomez-Sanz, J., Pavon, J., and Garijo, F. (2002).
Meta-Models for Building Multi-Agent Systems. Proceedings of the 2002
ACM symposium on Applied computing, pages 37–41. ACM Press.

[Graham et al., 1997] Graham, I., Hederson-Sellers, B., and Younessi, H.
(1997). The OPEN Process Specification. Addison-Wesley.

www.manaraa.com

References 471

[Grassé, 1959] Grassé, P.-P. (1959). La Reconstruction du Nid et les Coor-
dinations Inter-Individuelles chez Bellicositermes Natalensis et Cubitermes
sp. La Théorie de la Stigmergie: Essai d’Interprétation du Comportement
des Termites Constructeurs. Insectes Sociaux, 6, pages 41–84.

[Gray and Reuter, 1993] Gray, J., and Reuter, A. (1993). Transaction Process-
ing: Concepts and Techniques. Morgan Kaufmann.

[Gruber, 1991] Gruber, T. R. (1991). The Role of a Common Ontology
in Achieving Sharable, Reusable Knowledge Bases. Proceedings of the
Knowledge Representation and Reasoning Conference, pages 601–602.

[Guerraoui and Schiper, 1997] Guerraoui, R., and Schiper, A. (1997).
Software-Based Replication for Fault Tolerance. IEEE Computer, 30(4),
pages 68–74.

[Guessoum and Briot, 1999] Guessoum, Z., and Briot, J.-P. (1999). From Ac-
tive Objects to Autonomous Agents. IEEE Concurrency, 7(3), pages 68–76.

[Guessoum et al., 2002] Guessoum, Z., Briot, J.-P., and Charpentier, S.
(2002). Dynamic and Adaptative Replication for Large-Scale Reliable
Multi-Agent Systems. Proceedings of the International Workshop on
Software Engineering for Large-Scale Multi-Agent Systems (SELMAS’02),
Orlando, USA, ACM Press.

[Gulyas and Corliss, 1999] Gulyas, T. Kozsik, L., and Corliss, J. B. (1999).
The Multi-Agent Modelling Language and the Model Design Interface. The
Journal of Artificial Societies and Social Simulation, 2(4).

[Gurevich, 1984] Gurevich, Y. (1984). Toward Logic Tailored for Computa-
tional Complexity. Computation and Proof Theory, 1104, 175–216.

[Gustavsson and Fredriksson, 2003] Gustavsson, R., and Fredriksson, M.
(2003). Sustainable Information Ecosystems. Garcia, A., Lucena, C, Zam-
bonelli, F., Omicini, A., and Castro, J. (Eds.) Software Engineering for
Large-Scale Multi-Agent Systems, pp. 127-142, Springer-Verlag.

[Gutknecht and Ferber, 2001] Gutknecht, O., and Ferber M. (2001). Integrat-
ing Tools and Infrastructures for Generic Multi-Agent Systems. Proceed-
ings of Agents’01, pages 441-448.

[Hackwood and Beni, 1991] Hackwood, S., and Beni, G. (1991). Self-
Organizing Sensors by Deterministic Annealing. Proceedings of the
IEEE/RSJ International Conference on Intelligent Robot and Systems, pages
1177–1183.

www.manaraa.com

472 Methodologies and Software Engineering for Agent Systems

[Hackwood and Beni, 1992] Hackwood, S., and Beni, G. (1992). Self-
Organization of Sensors for Swarm Intelligence. Proceedings of the IEEE
International Conference on Robotics and Automation, pages 819–29.

[Halpern et al., 1995] Halpern, J. Y., Fagin, R., Moses, Y., and Vardi, M. Y.
(1995). Reasoning About Knowledge. The MIT Press.

[Hayden et al., 1999] Hayden, S., Carrick, C., and Yang, Q. (1999). Archi-
tectural Design Patterns for Multiagent Coordination. Proceedings of the

International Conference on Autonomous Agents (Agents ’99), Seattle,
USA.

[Heiler, 1995] Heiler, S. (1995). Semantic Interoperability. ACM Computing
Surveys, 27(2), pages 271–273.

[Heusse et al., 1998] Heusse, M., Guérin, S., Snyers, D., and Kuntz, P. (1998).
Adaptive Agent-Driven Routing and Load Balancing in Communication
Networks. Advances in Complex Systems, 1, pages 234–257.

[Hexmoor, 2001] Hexmoor, H. (2001). A Cognitive Model of Situated Auton-
omy. Advances in Artificial Intelligence, pages 325–334. Springer-Verlag.

[Hexmoor et al., 2003] Hexmoor, H., Castelfranchi, C., and Falcone, R.
(2003). A Prospectus on Agent Autonomy. Agent Autonomy, 1(1), pages
1–8.

[Heylighen, 1992] Heylighen, F. (1992). Evolution, Selfishness and Cooper-
ation; Selfish Memes and the Evolution of Cooperation. Journal of Ideas,
2-4, pages 70–84.

[Hindriks et al., 1999] Hindriks, K. V., Boer, F. S., der Hoek, W. V., and
Meyer, J.-J. (1999). Agent Programming in 3APL. Autonomous Agents
and Multi-Agent Systems, 2(4), pages 357–401.

[Holland, 1997] Holland, J. H. (1997). Emergence: From Order to Chaos.
Oxford University Press.

[Holzmann, 1991] Holzmann, G. J. (1991). Design and Validation of Com-
puter Protocols. Prentice-Hall International.

[Holzmann, 1997] Holzmann, G. J. (1997). The Model Checker Spin. IEEE
Transactions on Software Engineering, 23(5), pages 279–295.

[Horn, 2001] Horn, P. M. (2001). Autonomic Computing – IBM’s Perspective
on the State of Information Technology. Available at http://www.ibm.
com/research/autonomic.

www.manaraa.com

References 473

[Hornung and Bryan, 2002] Hornung, E., and Bryan, B. M. (Eds.) (2002). The
Quest for Immortality: Treasures of Ancient Egypt. National Gallery of Art.

[Howden et al., 2001] Howden, N., Ronnquist, R., Hodgson, A., and Lucas,
A. (2001). JACK Intelligent Agents – Summary of an Agent Infrastructure.
Proceedings of Agents’01.

[Huang et al., 1999] Huang, A. C., Ling, B. C., and Ponnekanti, S. (1999).
Pervasive Computing: What is it Good For? Proceedings of The ACM In-
ternational Workshop on Data Engineering for Wireless and Mobile Access
(MOBIDE’1999), Seattle, USA.

[Huberman, 1991] Huberman, B. A. (1991). The Performance of Cooperative
Processes. Forrest, S. (Ed.) Emergent Computation: Self-Organizing, Col-
lective, and Cooperative Phenomena in Natural and Artificial Computing
Networks, The MIT Press.

[Huget, 2002a] Huget, M.-P. (2002a). Agent UML Class Diagrams Revis-
ited. Bauer, B., Fischer, K., Muller, J., and Rumpe, B. (Eds.) Proceedings
of Agent Technology and Software Engineering (AgeS).

[Huget, 2002b] Huget, M.-P. (2002b). Generating Code for Agent UML Se-
quence Diagrams. Bauer, B., Fischer, K., Muller, J., and Rumpe, B. (Eds)
Proceedings of Agent Technology and Software Engineering (AgeS).

[Huget, 2002c] Huget, M.-P. (2002c). Model Checking Agent UML Proto-
col Diagrams. Proceedings of the Workshop on Model Checking Artificial
Intelligence (MoChArt).

[Huget, 2002d] Huget, M.-P. (2002d). Nemo: An Agent-Oriented Software
Engineering Methodology. Proceedings of the Workshop on Agent-Oriented
Methodologies, pages 41–53, Seattle, USA.

[Huhns and Singh, 1998] Huhns, M. N., and Singh, M. P. (1998). Agents and
Multiagent Systems: Themes, Approaches, and Challenges. Huhns, M. N.,
and Singh, M. P. (Eds.) Reading in Agents, pages 1–23.

[Huhns and Singh, 1999] Huhns, M. N., and Singh, M. P. (1999). A Mul-
tiagent Treatment of Agenthood. Applied Artificial Intelligence, 13(1–2),
pages 3–10.

[Huhns and Stephens, 1999] Huhns, M. N., and Stephens, L. M. (1999). Mul-
tiagent Systems and Societies of Agents. Weiss, G. (Ed.) Multiagent Sys-
tems, pages 79–120, The MIT Press.

www.manaraa.com

474 Methodologies and Software Engineering forAgent Systems

[Huhns et al., 2002] Huhns, M. N., Stephens, L. M., and Ivezic, N. (2002).
Automating Supply-Chain Management. Proceedings of the Interna-
tional Joint Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), pages 1017–1024, ACM Press.

[Huzita and Scimemi, 1989] Huzita, H., and Scimemi, B. (1989). The Algebra
of Paper-Folding. Proceedings of the International Meeting of Origami
Science and Technology.

[Iglesias, 1998] Iglesias, C. (1998). Definicion de una Metodologia para el
Desarrollo de Sistemas Multi-Agente. Ph.D. Thesis, Universidad Politec-
nica de Madrid.

[Iglesias et al., 1998a] Iglesias, C. A., Garrijo, M., González, J. (1998a). A
Survey of Agent-Oriented Methodologies. Agent Theories, Architectures
and Languages.

[Iglesias et al., 1998b] Iglesias, C. A., Garijo, M., Gonzales, J. C., and Ve-
lasco, J. R. (1998b). Analysis and Design of Multi-Agent Systems Using
MAS-CommonKADS. Singh, M. P., Rao, A., and Wooldridge, M. J. (Eds.)
Intelligent Agents IV, pages 313–326. Springer-Verlag.

[Inbody, 2003] Inbody, D. (2003). Swarming: Historical Observations and
Conclusions. Proceedings of Swarming: Network Enabled C4ISR, Tysons
Corner, VA.

[Intanagonwiwat et al., 2000] Intanagonwiwat, C., Govindan, R., Estrin, D.
(2000). Directed Diffusion: A Scalable and Robust Communication
Paradigm for Sensor Networks. Proceedings of MobiCom 2000.

[d’Inverno and Luck, 1996] d’Inverno, M., and Luck, M. (1996). A Formal
View of Social Dependence Networks. Proceedings of the Australian
Workshop on Distributed Artificial Intelligence, pages 115–129, Springer-
Verlag.

[d’Inverno et al., 2000] d’Inverno, M., Hindriks, K., and Luck, M. (2000). A
Formal Architecture for the 3APL Agent Programming Language. Proceed-
ings of the International Conference of B and Z Users, pages 168–187,
Springer-Verlag.

[ITU, 1999] International Telecommunications Union (1999). Languages for
Telecommunication Applications, Formal description techniques (FDT):
Message Sequence Charts (MSC). International Telecommunications
Union.

[Jacob, 2001] Jacob, C. (2001). Illustrating Evolutionary Computation with
Mathematica. Morgan Kaufmann.

www.manaraa.com

References 475

[Jacobson et al., 1999] Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The
Unified Software Development Process. Addison-Wesley.

[Jeng and Cheng, 1995] Jeng, J-J., Cheng, B. H. C. (1995). Specification
Matching for Software Reuse: A Foundation. Proceedings of the ACM SIG-
SOFT Symposium Software Reusability, ACM Press.

[Jennings, 2000] Jennings, N. R. (2000). On Agent-Based Software Engineer-
ing. Artificial Intelligence, 117(2), pages 277–296.

[Jennings, 2001] Jennings, N. R. (2001). An Agent-Based Approach for
Building Complex Software Systems. Communications of the ACM, 44(4),
pages 35–41.

[Jennings et al., 1998] Jennings, N. R., Sycara, K., and Wooldridge, M. J.
(1998). A Roadmap of Agent Research and Development. Autonomous
Agents and Multi-Agent Systems, 1(1).

[Jennings et al., 2000] Jennings, N. R., Faratin, P., Norman, T. J., O’Brien, P.,
and Odgers, B. (2000). Autonomous Agents for Business Process Manage-
ment. International Journal of Applied Artificial Intelligence, 14(2).

[Johansson and Saffiotti, 2001] Johansson, S. J., and Saffiotti, A. (2001). Us-
ing the Electric Field Approach in the RoboCup Domain. Proceedings of
RoboCup.

[Johnson and Zweig, 1991] Johnson R. E., Zweig, J. M. (1991). Delegation in
C++. The Journal of Object Oriented Programming, 4(7), pages 31–34.

[Joyce et al., 1987] Joyce, J., Lomow, G., Slind, K., and Unger, B. (1987).
Monitoring Distributed Systems. ACM Transactions on Computer Systems,
5(2), pages 121–150.

[Juan et al., 2002] Juan, T., Pierce, A., and Sterling, L. (2002). ROADMAP:
Extending the Gaia methodology for Complex Open Systems. Proceedings
of the ACM Joint Conference on Autonomous Agents and Multi-Agent
Systems, pages 3–10, ACM Press.

[Judge et al., 1998] Judge, D. W., Odgers, B. R., Shepherdson, J. W., and Cui,
Z. (1998). Agent-Enhanced Workflow. BT Technology Journal, 16(3), pages
79–85.

[Julian and Botti, 2004] Julian, V., and Botti, V. (2004) Developing Real-Time
Multi-Agent Systems. To appear in Integrated Computer Aided Engineering
Journal, 2004.

www.manaraa.com

476 Methodologies and Software Engineering for Agent Systems

[Kagal et al., 2001] Kagal, L., Finin, T., and Joshi, A. (2001). Moving from
Security to Distributed Trust in Ubiquitous Computing Environments. IEEE
Computer, 34(12).

[Kahn and Cicalese, 2001] Kahn, M. L., and Cicalese, C. (2001). CoABS
Grid Scalability Experiments. Proceedings of the International Work-
shop on Infrastructure for Scalable Multi-Agent systems at Autonomous
Agents, Montreal, CA.

[Kahn et al., 1999] Kahn, J. M., Katz, R. H., and Pister, K. S. (1999). Mobile
Networking for Smart Dust. Proceedings of MobiCom’99.

[Karamcheti et al., 1996] Karamcheti, V, Plevyak, J., and Chien, A., (1996).
Runtime Mechanisms for Efficient Dynamic Multithreading. Journal of
Parallel and Distributed Computing, 37, pages 21–40.

[Kawamura et al., 1999] Kawamura, T., Yoshioka, N., Hasegawa, T., Ohsuga,
A., and Honiden, S., (1999). Bee-gent: Bonding and Encapsulation En-
hancement Agent Framework for Development of Distributed Systems.
Proceedings of the Asia-Pacific Software Engineering Conference.

[Kendall, 1998] Kendall, E. A. (1998). Agent Roles and Role Models: New
Abstractions for Multiagent System Analysis and Design. Proceedings of
the International Workshop on Intelligent Agents in Information and Pro-
cess Management.

[Kendall, 2000] Kendall, E. A. (2000). Agent Software Engineering with Role
Modelling. Proceedings of the Workshop on Agent-Oriented Software En-
gineering, pages 163–169, Springer-Verlag.

[Kendall and Malkoun, 1996] Kendall, E. A., and Malkoun, M. T. (1996). The
Layered Agent Patterns. Pattern Languages of Programs (PLoP’96).

[Kendall et al., 1995] Kendall, E. A., Malkoun, M. T., and Jiang, C. H. (1995).
A Methodology for Developing Agent Based Systems. Zhang, C., and
Lukose, D. (Eds.) Proceedings of the Australian Workshop on Dis-
tributed Artificial Intelligence.

[Kennedy et al., 2001] Kennedy, J., Eberhart, R. C., and Shi, Y. (2001). Swarm
Intelligence. Morgan Kaufmann.

[Kephart, 2002] Kephart, J. (2002). Software Agents and the Route to the
Information Economy. Proceedings of the National Academy of Science,
99(3), pages 7207–7213.

[Kerr et al., 1998] Kerr, D., O’Sullivan, D., Evans, R., Richardson, R., and
Somers, F., (1998). Experiences using Intelligent Agent Technologies as

www.manaraa.com

References 477

a Unifying Approach to Network and Service Management. Proceedings of
IS & N’98, Antwerp, Belgium.

[Kiczales et al., 1991] Kiczales, G., des Rivières, J., and Bobrow, D. G.
(1991). The Art of the Metaobject Protocol. The MIT Press.

[Kim, 1997] Kim, J. (1997). Explanation, Prediction, and Reduction in Emer-
gentism. Intellectica – Emergence and Explanation, 2-25.

[Kinny and Georgeff, 1996] Kinny, D., and Georgeff, M. (1996). Modelling
and Design of Multi-Agent Systems. Intelligent Agents III, Springer-Verlag.

[Kinny et al., 1996] Kinny, D., Georgeff, M., and Rao, A. (1996). A Method-
ology and Modelling Technique for Systems of BDI Agents. van der Velde,
W., and Perram, J. (Eds.) Agents Breaking Away, pages 56–71. Springer-
Verlag.

[Klusch and Sycara, 2001] Klusch, M., and Sycara, K. (2001). Brokering and
Matchmaking for Coordination of Agent Societies: A Survey. Omicini, A.,
Zambonelli, F., Klusch, M., and Tolksdorf, R. (Eds.) Coordination of Inter-
net Agents: Models, Technologies, and Applications, pages 197–224.

[Knublauch and Rose, 2002] Knublauch, H. H., and Rose, T. (2002). Tool-
Supported Process Analysis and Design for the Development of Multi-
Agent Systems. Proceedings of AOSE 2002, Springer-Verlag.

[Kolp et al., 2001] Kolp, M., Giorgini, P., and Mylopoulos, J. (2001). A Goal-
Based Organizational Perspective on Multi-Agents Architectures. Proceed-
ings of the International Workshop on Agent Theories, Architectures,
and Languages, ATAL’01, Seattle, USA.

[Koning and Romero-Hernandez, 2002] Koning, J.-L., and Romero-
Hernandez, I. (2002). Generating Machine Processable Representations
of Textual Representations of AUML. Giunchiglia, F, Odell, J., and
Weiss, G. (Eds.) Proceedings of the Workshop on Agent-Oriented Software
Engineering (AOSE).

[Kortuem and Segall, 2003] Kortuem, G., and Segall, Z. (2003). Wearable
Communities: Augmenting Social Networks with Wearable Computers.
IEEE Pervasive Computing Magazine, 2(1).

[Kouadri Mostéfaoui, 2003] Kouadri Mostéfaoui, S. (2003). Towards a
Context-Oriented Services Discovery and Composition Framework. Pro-
ceedings of the Workshop on Artificial Intelligence, Information Access, and
Mobile Computing, Acapulco, Mexico.

www.manaraa.com

478 Methodologies and Software Engineering for Agent Systems

[Kruchten, 2000] Kruchten, P. (2000). The Rational Unified Process: An In-
troduction. Addison-Wesley.

[Kumar, 2002] Kumar, M. (2002). Contrast and Comparison of Five Major
Agent Oriented Software Engineering (AOSE) methodologies. Available
at http://students.jmc.ksu.edu/grad/madhukar/www/professional/

aosepaper.pdf.

[Kuutti, 1991] Kuutti, K. (1991). The Concept of Activity as a Basic Unit of
Analysis for CSCW Research. Proceedings of the European Conference
on Computer Supported Cooperative Work (ECSCW ’91), pages 249–264,
Kluwer Academic Publishers.

[Kuwabara et al., 1996] Kuwabara, K., Ishida, T., Nishibe, Y., and Suda, T.
(1996). An Equilibratory Market-Based Approach for Distributed Re-
source Allocation and Its Applications to Communication Network Control.
Market-Based Control: A Paradigm for Distributed Resource Allocation,
pages 53–73, World Scientific Publishing.

[Labrou and Finin, 1997] Labrou, Y., and Finin, T. (1997). A Proposal for a
New KQML Specification. Technical Report TR-CS-97-03, University of
Maryland.

[Labrou et al., 1999] Labrou, Y., Finin, T., and Peng, Y. (1999). The Current
Landscape of Agent Communication Languages. Intelligent Systems, 14(2),
pages 45–52.

[Lacey et al., 2000] Lacey, T. H., and DeLoach, S. A. (2000). Automatic Ver-
ification of Multiagent Conversations. Proceedings of the Annual Mid-
west Artificial Intelligence and Cognitive Science Conference, Fayetteville,
USA.

[Laird et al., 1987] Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987).
SOAR: An Architecture for General Intelligence. Artificial Intelligence,
33(1), pages 1–64.

[Lange and Oshima, 1999] Lange, D., and Oshima, M. (1999). Dispatch Your
Agents; Shut Off Your Machine. Communications of the ACM, 42(3).

[Lavender and Schmidt, 1996] Lavender, G., and Schmidt, D., (1996). Ac-
tive Object: An Object Behavioural Pattern for Concurrent Programming.
Vlissides, J.M., Coplien, J.O., and Kerth, N.L. (Eds.) Pattern Languages of
Program Design, Addison-Wesley.

[Lawley et al., 2003] Lawley, R., Decker, K., Luck, M., Payne, T., and
Moreau, L. (2003). Automated Negotiation for Grid Notification Services.

www.manaraa.com

References 479

Proceedings of the International Europar Conference (EURO-PAR’03),
Springer-Verlag.

[Lawrence, 1992] Lawrence, P. A. (1992). The Making of a Fly: the Genetics
of Animal Design. Blackwell Science.

[Lea, 1997] Lea, D. (1997). Concurrent Programming in Java: Design Princi-
ples and Patterns. Addison-Wesley.

[Leontjev, 1978] Leontjev, A. (1978). Activity, Consciousness, and Personal-
ity. Prentice-Hall International.

[Lesperance et al., 1999] Lesperance, Y., Kelley, T. G., Mylopoulos, J., and
Yu, E. (1999). Modeling Dynamic Domains with Congolog. Proceedings
of CAiSE’99, pages 365–380, Springer-Verlag.

[Leyman, 2001] Leyman, F. (2001). Web Services Flow Language (WSFL).
Technical report, IBM.

[Lind, 2000] Lind, J. (2000). A Development Method for Multiagent systems.
Proceedings of the European Meeting on Cybernetics and Systems Re-
search.

[Lind, 2001] Lind, J. (2001). Iterative Software Engineering for Multi-Agent
Systems, The MASSIVE Method. Springer-Verlag.

[Loo, 2003] Loo, A. W. (2003). The Future of Peer-to-Peer Computing. Com-
munications of the ACM, 46(9), pages 56–61, ACM Press.

[Lord et al., 2003] Lord, P., Wroe, C., Stevens, R., Goble, C., Miles, S.,
Moreau, L., Decker, K., Payne, T., and Papay, J. (2003). Semantic and
Personalised Service Discovery. Cheung, W. K., and Ye, Y. (Eds.) Proceed-
ings of the Workshop on Knowledge Grid and Grid Intelligence (KGGI’03),
pages 100–107.

[Luck and d’Inverno, 1995] Luck, M., and d’Inverno, M. (1995). A Formal
Framework for Agency and Autonomy. Lesser, V, and Gasser, L. (Eds.)
Proceedings of the International Conference on Multi-Agent Systems
(ICMAS-95), pages 254–260, AAAI Press.

[Luck and d’Inverno, 2001] Luck, M., and d’Inverno, M. (2001). A Concep-
tual Framework for Agent Definition and Development. The Computer Jour-
nal 44(1), pages 1–20.

[Luck et al., 2003] Luck, M., McBurney, P., and Preist, C. (2003). Agent Tech-
nology: Enabling Next Generation Computing. AgentLink II.

www.manaraa.com

480 Methodologies and Software Engineering for Agent Systems

[Lynch, 1996] Lynch, N. (1996). Distributed Algorithms. Morgan Kaufmann.

[Lyytinen and Yoo, 2002] Lyytinen, K., and Yoo, Y. (2002). Issues and Chal-
lenges in Ubiquitous Computing. Communications of the ACM, 45(12).

[Maamar et al., 2001] Maamar, Z., Dorion, E., and Daigle, C. (2001). To-
wards Virtual Marketplaces for E-Commerce. Communications of the ACM,
44(12).

[Maamar et al., 2004] Maamar, Z., Sheng, Q. Z., and Benatallah, B. (2004).
On Composite Web Services Provisioning in an Environment of Fixed and
Mobile Computing Resources. Information Technology and Management
Journal, 5(3), Kluwer Academic Publishers.

[Machado, 2003] Machado, R. (2003). SIM Speak. Available at http: / / www.
inf.ufrgs.br/~bordini/SIM_Speak.

[Machado and Bordini, 2001] Machado, R., and Bordini, R. H. (2001). Run-
ning AgentSpeak(L) Agents on SIM_AGENT. Meyer, J. J., and Tambe, M.
(Eds.) Intelligent Agents VIII, pages 158–174.

[Maes, 1994] Maes, P. (1994). Agents that Reduce Work and Information
Overload. Communications of the ACM, 37(7), pages 31–40.

[Malone and Crowston, 1994] Malone, T., and Crowston, K. (1994). The In-
terdisciplinary Study of Coordination. ACM Computing Surveys, 26(1),
pages 87–119.

[Mamei et al., 2003a] Mamei, M., Zambonelli, F., and Leonardi, L. (2003a).
Tuples on the Air: a Middleware for Context-Aware Computing in Dynamic
Networks. Proceedings of the International ICDCS Workshop on Mobile
Computing Middleware.

[Mamei et al., 2003b] Mamei, M., Zambonelli, F., and Leonardi, L. (2003b).
Distributed Motion Coordination with Co-Fields: A Case Study in Urban
Traffic Management. Proceedings of the IEEE Symposium on Autonomous
Decentralized Systems.

[Mangina, 2002] Mangina, E. (2002). Review of Software Products for Multi-
Agent Systems. AgentLink II.

[Marik et al., 2003] Marik, V., Pechoucek, M., Vrba, P., and Hrdonka, V.,
(2003). FIPA Standards and Holonic Manufacturing. Agent Based Man-
ufacturing. Deen, S. M. (Ed.), Advances in the Holonic Approach, pages
89–121, Springer-Verlag.

www.manaraa.com

References 481

[Massonet et al., 2002] Massonet, P., Deville, Y., and Neve, C. (2002). From
AOSE Methodology to Agent Implementation. Proceedings of the Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’02), Bologna, Italy.

[Mathieson et al., 2004] Mathieson, I., Dance, S., Padgham, L., Gorman, M.,
and Winikoff, M. (2004). An Open Meteorological Alerting System: Is-
sues and Solutions. Proceedings of the Australasian Computer Science
Conference, Dunedin, New Zealand.

[Maximilien and Singh, 2002] Maximilien, E. M., and Singh, M. P. (2002).
Reputation and Endorsement for Web Services. ACM SIGEcom Exchanges,
3(1), pages 24–31.

[McCabe and Clark, 1995] McCabe, F. G., and Clark, K. L. (1995). April –
Agent PRocess Interaction Language. Wooldridge, M. J., and Jennings, N.
(Eds.) Intelligent Agents, Springer-Verlag.

[McCarthy, 1978] McCarthy, J. (1978). History of LISP. The ACM SIG-
PLAN Conference on History of Programming Languages, pages 217–223.

[McCarthy and Hayes, 1981] McCarthy, J., and Hayes, P. J. (1981). Some
Philosophical Problems from the Standpoint of Artificial Intelligence. Web-
ber, B. L. and Nilsson, N. J. (Eds.) Readings in Artificial Intelligence, pages
431–450. Morgan Kaufmann.

[McIlraith and Martin, 2003] McIlraith, S., and Martin, D. (2003). Bringing
Semantics to Web Services. IEEE Intelligent Systems, 18(1), pages 90–93.

[Medvidovic and Taylor, 1997] Medvidovic, N., and Taylor, R. N. (1997). A
Framework for Classifying and Comparing Architecture Description Lan-
guages. Proceedings of the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 60–76, Springer-Verlag.

[Meling et al., 2001] Meling, H., Montresor, A., and Babaoglu, O. (2001).
Peer-to-Peer Document Sharing using the Ant Paradigm. Proceedings of
the Norsk Informatikkonferanse (NIK).

[Mendez and Tolksdorf, 2003] Mendez, R., and Tolksdorf R. (2003). A New
Approach to Scalable Linda-Systems Based on Swarms. Proceedings of
ACM SAC ’03.

[Messer et al., 2002] Messer, A., Greeberg, I., Bernadat, P., and Milojicic, D.
(2002). Towards a Distributed Platform for Resource-Constrained Devices.
Proceedings of the IEEE International Conference on Distributed
Computing Systems (ICDCS’2002), Vienna, Austria.

www.manaraa.com

482 Methodologies and Software Engineering for Agent Systems

[Meyer, 1992] Meyer, B. (1992). Applying Design by Contract. IEEE Com-
puter, 25(10), pages 40–51.

[Meyer, 1997] Meyer, B. (1997). Object-Oriented Software Construction.
Prentice-Hall International.

[Miles et al., 2000] Miles, S., Joy, M., and Luck, M. (2000). Designing Agent-
Oriented Systems by Analysing Agent Interactions. Ciancarini, P., and
Wooldridge, M. J. (Eds.) Proceedings of Agent-Oriented Software Engi-
neering 2000 (AOSE 2000), pages 171–184.

[Miles et al., 2003] Miles, S., Papay, J., Dialani, V., Luck, M., Decker, K.,
Payne, T., and Moreau, L. (2003). Personalised Grid Service Discovery.
IEE Proceedings of Software: Special Issue on Performance Engineering,
150(4), pages 252–256.

[Miller et al., 1996] Miller, M. S., Krieger, D., Hardy, N., Hibbert, C., and
Tribble, D. E. (1996). An Automated Auction in ATM Network Bandwidth.
Market-Based Control. A Paradigm for Distributed Resource Allocation,
pages 96–125.

[Milojicic et al., 1998] Milojicic, D., Breugst, M., Busse, I., Campbell, J., Co-
vaci, S., Friedman, B., Kosaka, K., Lange, D., Ono, K., Oshima, M., Tham,
C., Virdhagriswaran, S., and White J. (1998). MASIF – The OMG Mobile
Agent System Interoperability Facility. Rothermel K., and Hohl, F. (Eds.)
Proceedings of the International Workshop Mobile Agents, pages 50–67,
Springer-Verlag.

[Mintzberg, 1992] Mintzberg, H. (1992). Structure in Fives: Designing Effec-
tive Organizations. Prentice-Hall International.

[Morabito et al., 1999] Morabito, J., Sack, I., and Bhate, A. (1999). Organiza-
tion Modeling: Innovative Architectures for the Century. Prentice-Hall
International.

[Moraitis et al., 2002] Moraitis, P., Petraki, E., and Spanoudakis, N. I. (2002).
Engineering JADE Agents with the Gaia Methodology. Proceedings of the
International Workshop on Agents and Software Engineering.

[Moreau, 2002] Moreau, L. (2002). Agents for the Grid: A Comparison with
Web Services (Part 1: The Transport Layer). Bal, H. E., Lohr, K.-P., and
Reinefeld, A. (Eds.) Proceedings of the IEEE/ACM International Sym-
posium on Cluster Computing and the Grid (CCGRID 2002), pages 220–
228, Berlin, Germany.

[Moreau et al., 2003] Moreau, L., Miles, S., Goble, C., Greenwood, M., Di-
alani, V., Addis, M., Alpdemir, N., Cawley, R., De Roure, D., Ferris, J.,

www.manaraa.com

References 483

Gaizauskas, R., Glover, K., Greenhalgh, C., Li, P., Liu, X., Lord, P., Luck,
M., Marvin, D., Oinn, T., Paton, N., Pettifer, S., Radenkovic, M. V., Roberts,
A., Robinson, A., Rodden, T., Senger, M., Sharman, N., Stevens, R., War-
boys, B., Wipat, A., and Wroe, C. (2003). On the Use of Agents in a BioIn-
formatics Grid. Proceedings of the Third IEEE/ACM CCGRID’2003 Work-
shop on Agent Based Cluster and Grid Computing, pages 653–661, Tokyo,
Japan.

[Moss, 2000] Moss, S. (2000). Editorial Introduction: Messy Systems – The
Target for Multi Agent Based Simulation, Springer-Verlag.

[Moulin and Chaib-draa, 1996] Moulin, B., and Chaib-draa, B. (1996). An
Overview of Distributed Artificial Intelligence. Foundations of Distributed
Artificial Intelligence, John Wiley & Sons.

[Muller, 1996] Muller, J. P. (1996). The Design of Intelligent Agents: A Lay-
ered Approach, Springer-Verlag.

[Muller, 2003] Muller, J. P. (2003). The Right Agent (Architecture) to do the
Right Thing. Intelligent Agents V, pages 105–112, Springer-Verlag.

[Muller and Pischel, 1994] Muller, J., and Pischel, M. (1994). Modelling Re-
active Behaviour in Vertically Layered Agent Architectures. Cohen, A. G.
(Ed.) European Conference on Artificial Intelligence (ECAI’94), pages
709–713.

[Mylopoulos and Castro, 2000] Mylopoulos, J., and Castro, J. (2000). Tro-
pos: A Framework for Requirements-Driven Software Development. Pro-
ceedings of Conference on Advanced Information Systems Engineering
(CAISE).

[Nakajima et al., 2003] Nakajima, T., Awa, I., and Tokunaga, E. (2003). A
Proactive Middleware Platform for Mobile Computing. Proceedings of the

ACM International Middleware Conference (Middleware’2003), Rio de
Janeiro, Brazil.

[Nagpal, 2001] Nagpal, 2001. Programmable Self-Assembly: Constructing
Global Shape using Biologically-Inspired Local Interactions and Origami
Mathematics. Ph.D. Thesis, MIT, 2001.

[Nagpal, 2002] Nagpal, R. (2002). Programmable Self-Assembly Using
Biologically-Inspired Multiagent Control. Proceedings of the Conference
on Autonomous Agents and Multiagent Systems (AAMAS).

[Nagpal and Coore, 1998] Nagpal, R., and Coore, D. (1998). An Algorithm
for Group Formation in an Amorphous Computer. Proceedings of the In-

www.manaraa.com

484 Methodologies and Software Engineering for Agent Systems

ternational Conference on Parallel and Distributed Computing and Systems
(PDCS).

[Nagpal et al., 2003] Nagpal, R., Shrobe, H., and Bachrach, J. (2003). Orga-
nizing a Global Coordinate System from Local Information on an Ad Hoc
Sensor Network. Proceedings of the International Workshop on Infor-
mation Processing in Sensor Networks (IPSN).

[Ndumu et al., 1999] Ndumu, D. T., Nwana, H. S., Lee, L. C., and Collis, J. C.
(1999). Visualising and Debugging Distributed Multi-Agent Systems. Pro-
ceedings of the Annual Conference on Autonomous Agents, pages 326–
333, ACM Press.

[Neufeld, 1980] Neufeld, E. (1980). Insects as Warfare Agents in the Ancient
Near East. Orientalia, 49(1), pages 30–57.

[Newell, 1982] Newell, A. (1982). The Knowledge Level. Artificial Intelli-
gence, 7(18), pages 87–127.

[Newell, 1993] Newell, A. (1993). Reflections on the Knowledge Level. Ar-
tificial Intelligence, 59, pages 31–38.

[Nilsson, 1971] Nilsson, N. (1971). Problem Solving Methods in Artificial
Intelligence. McGraw Hill.

[Noriega and Sierra, 1999] Noriega, P., and Sierra, C. (1999). Auctions and
Multi-agent Systems. Klusch, M. (Ed.) Information Agents, pages 153–175,
Springer-Verlag.

[Noriega and Sierra, 2002] Noriega, P., and Sierra, C. (2002). Electronic In-
stitutions: Future Trends and Challenges. Klusch, M., Ossowski, S., and
Shehory, O. (Eds.) Cooperative Information Agents VI, Springer-Verlag.

[Nuseibeh and Easterbrook, 2000] Nuseibeh, B. A., and Easterbrook, S. M.
(2000). Requirements Engineering: A Roadmap. Proceedings of the
International Conference on Software Engineering (ICSE’00), pages 35–46.

[Nutt, 1996] Nutt, G. (1996). The Evolution Toward Flexible Workflow Sys-
tems. Distributed Systems Engineering, 3(4), pages 276–294.

[Nwana, 1996] Nwana, H. S. (1996). Software Agents: An Overview. The
Knowledge Engineering Review, 11(3), pages 205–244.

[Nwana and Ndumu, 1999] Nwana, H. S., and Ndumu, D. T. (1999). A Per-
spective on Software Agents Research. The Knowledge Engineering Re-
view, 14(2), pages 1–18.

www.manaraa.com

References 485

[Nwana et al., 1999] Nwana, H. S., Ndumu, D. T., Lee, L. C., and Collis, J. C.
(1999). Zeus: A Toolkit for Building Distributed Multi-agent Systems. Ap-
plied Artificial Intelligence Journal, 1(13), pages 129–185.

[Oaks and Wong, 2000] Oaks, S., and Wong, H. (2000). Jini in a Nutshell.
O’Reilly.

[Obreiter et al., 2003] Obreiter, P., Konig-Ries, B., and Klein, M. (2003).
Stimulating Cooperative Behavior of Autonomous Devices – An Analy-
sis of Requirements and Existing Approaches. Technical Report 2003-1,
University of Karlsruhe.

[Odell, 2002] Odell, J. (2002). Objects and Agents Compared. Journal of
Object Computing, 1:1.

[Odell et al., 2000] Odell, J., Parunak, V. H., and Bauer, B. (2000). Extending
UML for Agents. Proceedings of the Agent Oriented Information Systems
(AOIS) Workshop.

[Odell et al., 2001] Odell, J., Parunak, V. H., and Bauer, B. (2001). Represent-
ing Agent Interaction Protocols in UML. Ciancarini, P., and Wooldridge,
M. J. (Eds.) Proceedings of the First International Workshop on Agent Ori-
ented Software Engineering (AOSE-2000), pages 121–140, Springer-Verlag.

[OMG, 1999] Object Management Group (1999). Mobile Agent System In-
teroperability Facility (MASIF). Available at http://www.fokus.gmd.de/
research/cc/ecco/masif.

[OMG, 2000a] Object Management Group (2000a). CORBA 2.4.2 Specifica-
tion. Available at http://www.omg.org.

[OMG, 2000b] Object Management Group (2000b). Meta Object Facility
(MOF). Available at http: //www. omg. org.

[OMG, 2000c] Object Management Group (2000c). Unified Modeling Lan-
guage Specification. Version 1.3. Available at http://www.omg.org.

[OMG, 2001] Object Management Group (2001). Model Driven Architecture
(MDA). Technical report, OMG.

[OMG, 2002] Object Management Group (2002). Software Process En-
gineering Metamodel. Version 1.0. Available at http://www.omg.org/
technology/documents/formal/spem.htm.

[OMG, 2003a] Object Management Group (2003a). XML Metadata Inter-
change – Version 1.1. Available at http://www.omg.org.

www.manaraa.com

486 Methodologies and Software Engineering for Agent Systems

[OMG, 2003b] Object Management Group (2003b). Unified Modeling Lan-
guage: Superstructure – Version 2.0. Available at http: //www. omg. org.

[OMG, 2003c] Object Management Group (2003c). Response to the UML 2.0
OCL RfP. Available at http://www.omg.org.

[Omicini, 2001] Omicini, A. (2001). SODA: Societies and Infrastructures
in the Analysis and Design of Agent-Based Systems. Ciancarini, P., and
Wooldridge, M. J. (Eds.) Agent-Oriented Software Engineering, pages 185–
193. Springer-Verlag.

[Omicini, 2002] Omicini, A. (2002). Towards a Notion of Agent Coordination
Context. Marinescu, D. C., and Lee, C. (Eds.) Process Coordination and
Ubiquitous Computing, pages 187–200. CRC Press.

[Omicini and Denti, 2001] Omicini, A., and Denti, E. (2001). From Tuple
Spaces to Tuple Centres. Science of Computer Programming, 41(3), pages
277–294.

[Omicini and Ossowski, 2003] Omicini, A., and Ossowski, S. (2003). Objec-
tive versus Subjective Coordination in the Engineering of Agent Systems.
Klusch, M., Bergamaschi, S., Edwards, P., and Petta, P. (Eds.) Intelligent
Information Agents: An AgentLink Perspective, pages 179–202, Springer-
Verlag.

[Omicini and Ricci, 2003] Omicini, A., and Ricci, A. (2003). Reasoning
about Organisation: Shaping the Infrastructure. AI*IA Notizie, XVI(2),
pages 7–16.

[Omicini and Zambonelli, 1999] Omicini, A., and Zambonelli, F. (1999). Co-
ordination for Internet Application Development. International Journal on
Autonomous Agents and Multi-Agent Systems, 2(3), pages 251–269.

[Omicini et al., 2003] Omicini, A., Ricci, A., and Viroli, M. (2003). Formal
Specification and Enactment of Security Policies through Agent Coordi-
nation Contexts. Focardi, R., and Zavattaro, G. (Eds.) Security Issues in
Coordination Models, Languages and Systems, Elsevier Science.

[Ossowski, 1999] Ossowski, S. (1999). Coordination in Artificial Agent Soci-
eties – Social Structure and Its Implications for Autonomus Problem-solving
Agents, Springer-Verlag.

[Ossowski and Omicini, 2002] Ossowski, S., and Omicini, A. (2002). Coordi-
nation Knowledge Engineering. The Knowledge Engineering Review, 17(4),
pages 309–316.

www.manaraa.com

References 487

[Ossowski et al., 2002] Ossowski, S., Hernández, J. Z., Iglesias, C. A., and
Fernández, A. (2002). Engineering Agent Systems for Decision Support.
Petta, P., Tolksdorf, R., and Zambonelli, F. (Eds.) Engineering Societies in
an Agent World III. Springer-Verlag.

[Ott et al., 1990] Ott, E., Grebogi, C., and Yorke, J. A. (1990). Controlling
Chaos. Physical Review Letters, 64(11), pages 1196–1199.

[Padgham and Winikoff, 2002] Padgham, L., and Winikoff, M. (2002).
Prometheus: A Pragmatic Methodology for Engineering Intelligent Agents.
Proceedings of the Workshop on Agent-Oriented Methodologies, pages 97–
108.

[Paolucci et al., 2002] Paolucci, M., Kawamura, T., Payne, T. R., and Sycara,
K. (2002). Importing the Semantic Web in UDDI. Proceedings of the Work-
shop on Web Services, E-Business and Semantic Web.

[Papadopoulos and Arbab, 1998] Papadopoulos, G. A., and Arbab, F. (1998).
Coordination Models and Languages. The Engineering of Large Systems,
46.

[Papasimeon and Heinze, 2001] Papasimeon, M., and Heinze, C. (2001). Ex-
tending the UML for Designing JACK Agents. Proceedings of the Aus-
tralian Software Engineering Conference (ASWEC 01).

[Parunak, 1990] Parunak, H. V. D. (1990). Distributed AI and Manufacturing
Control: Some Issues and Insights. Demazeau, Y., and Muller, J.-P. (Eds.)
Decentralized AI, pages 81–104.

[Parunak, 1997] Parunak, H.V.D. (1997). Go to the Ant: Engineering Prin-
ciples from Natural Agent Systems. Annals of Operations Research, 75,
pages 69–101.

[Parunak and Brueckner, 2001] Parunak, H. V. D., and Brueckner, S. (2001).
Entropy and Self-Organization in Multi-Agent Systems. Proceedings of the

International Conference on Autonomous Agents (Agents 2001), pages
124–130, ACM Press.

[Parunak and Brueckner, 2003] Parunak, H. V. D., and Brueckner, S. (2003).
Swarming Coordination of Multiple UAV’s for Collaborative Sensing. Pro-
ceedings of AIAA “Unmanned Unlimited” Systems, Technologies, and
Operations Conference, San Diego, USA.

[Parunak and Odell, 2001] Parunak, H. V. D., and Odell, J. (2001). Repre-
senting Social Structures in UML. Proceedings of the International
Conference on Autonomous Agents, pages 100–101. ACM Press.

www.manaraa.com

488 Methodologies and Software Engineering for Agent Systems

[Parunak and Vanderbok, 1997] Parunak, H. V. D., and Vanderbok, R. S.
(1997). Managing Emergent Behavior in Distributed Control Systems. Pro-
ceedings of ISA-Tech’97.

[Parunak et al., 1998a] Parunak, H. V. D., Savit, R., and Riolo R. L. (1998).
Agent-Based Modeling vs. Equation-Based Modeling: A Case Study and
Users’ Guide. Proceedings of the Workshop on Modeling Agent Based Sys-
tems, pages 1–15.

[Parunak et al., 1998b] Parunak, H. V. D., Sauter, J., and Clask, S. (1998).
Toward the Specification and Design of Industrial Synthetic Ecosystems.
Singh, M., Rao, A., and Wooldridge, M. J. (Eds.) Agent Theories, Architec-
tures, and Languages (ATAL), pp. 45–59, Springer-Verlag.

[Parunak et al., 2000] Parunak, H. V. D., Brueckener, S. A., Sauter, J., and
Matthews, R. (2000). Distinguishing Environmental Properties and Agent
Dynamics: A Case Study in Abstraction and Alternate Modelling Technolo-
gies. Omicini, A., Tolksdorf, R., and Zambonelli, F. (Eds.) Engineering
Societies in the Agents’ Eorld (ESAW), pp. 19–33, Springer-Verlag.

[Parunak et al., 2002a] Parunak, H. V. D., Brueckner, S. A., and Sauter, J.
(2002a). Digital Pheromone Mechanisms for Coordination of Unmanned
Vehicles. Proceedings of International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2002), pages 449–450.

[Parunak et al., 2002b] Parunak, H. V. D., Purcell, M., and O’Connell, R.
(2002b). Digital Pheromones for Autonomous Coordination of Swarming
UAV’s. Proceedings of AIAA “Unmanned Aerospace Vehicles” Systems,
Technologies, and Operations Conference, Norfolk, VA.

[Pasquier and Chaib-draa, 2003] Pasquier, P., and Chaib-draa, B. (2003). The
Cognitive Approach for Agent Communication Pragmatics. Proceedings of
the International Joint Conference on Autonomous Agents and Multia-
gent Systems, pages 544–551, ACM Press.

[Patil et al., 1992] Patil, R. S., Fikes, R. E., Patel-Scheneider, P. F., McKay,
D., Finin, T., Gruber, T., and Neches, R. (1992). The DARPA Knowledge
Sharing Effort: Progress Report. Proceedings of the Conference on Prin-
ciples of Knowledge Representation and Reasoning, pages 103–114. Cam-
bridge, USA.

[Pavón and Gómez-Sanz, 2003] Pavón, J., and Gómez-Sanz, J. (2003). Agent
Oriented Software Engineering with INGENIAS. Multi-Agent Systems and
Applications III, pages 394–403, Springer-Verlag.

www.manaraa.com

References 489

[Payton et al., 2002] Payton, D., Estkowski, E., and Howard, R. (2002).
Progress in Pheromone Robotics. Proceedings of the International Con-
ference on Intelligent Autonomous Systems.

[Pister, 2001] Pister, K. (2001). Smart Dust: Autonomous Sensing and Com-
munication in a Cubic Millimeter. Available at http://robotics.eecs.

berkeley.edu/~pister/SmartDust.

[Plosch and Pichler, 1999] Plosch, R., and Pichler, J. (1999). Contracts: From
Analysis to C++ Implementation. IEEE Computer, pages 248–257.

[Poor, 2001] Poor, R. D. (2001). Embedded Networks: Pervasive, Low-Power,
Wireless Connectivity. Ph.D. Thesis, MIT.

[Popovici et al., 2003] Popovici, A., Frei, A., and Alonso, G. (2003). A Proac-
tive Middleware Platform for Mobile Computing. Proceedings of the
International Middleware Conference (Middleware’2003), Rio de Janeiro,
Brazil.

[Poslad et al., 2000] Poslad, S., Buckle, P., and Hadingham, R. (2000). The
FIPA-OS Agent Platform: Open Source for Open Standards. Available at
http://fipa-os.sourceforge.net.

[Poutakidis et al., 2002] Poutakidis, D., Padgham, L., and Winikoff, M.
(2002). Debugging Multi-Agent Systems using Design Artifacts: The Case
of Interaction Protocols. Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, pages 960–967, ACM
Press.

[Poutakidis et al., 2003] Poutakidis, D., Padgham, L., and Winikoff, M.
(2003). An Exploration of Bugs and Debugging in Multi-Agent Systems.
Proceedings of the International Symposium on Methodologies for In-
telligent Systems (ISMIS), Maebashi City, Japan.

[Pratt et al., 1999] Pratt, D. R., Ragusa L. C., and von der Lippe, S. (1999).
Composability as an Architeture Driver. Proceedings of the International
Conference on Interservice/Industry Training, Simulation and Education,
Orlando, Florida.

[Pree, 1995] Pree, W. (1995). State-of-the-Art Design Pattern Approaches: An
Overview. Proceedings of Technology of Object-Oriented Languages and
Systems (TOOLS ’95).

[Pressman, 1982] Pressman, R. S. (1982). Software Engineering: A Practi-
tioner’s Approach. McGraw-Hill.

www.manaraa.com

490 Methodologies and Software Engineering for Agent Systems

[Priyantha et al., 2000] Priyantha, N. B., Chakraborty, A., and Balakrishnan,
H. (2000). The Cricket Location-Support System. Proceedings ofMobiCom
2000.

[Purvis et al., 2002] Purvis, M., Cranefield, S., Nowostawski, M., Ward, R.,
Carter, D., and Oliveira, M.A., (2002). Agentcities Interaction Using the
Opal Platform. Proceedings of Agentcities: Research in Large-Scale Open
Agents Environments.

[Ralph and Shephard, 2001] Ralph, D., and Shephard, C. G. (2001). Services
via Mobility Portals. BT Technology Journal, 19(1).

[Rana and Moreau, 2000] Rana, O. F., and Moreau, L. (2000). Issues in Build-
ing Agent based Computational Grids. Third Workshop of the UK Special
Interest Group on Multi-Agent Systems (UKMAS’2000), Oxford, UK.

[Rana and Walker, 2000] Rana, O. F., and Walker, D. W. (2000). The Agent
Grid’: Agent-Based Resource Integration in PSEs. Proceedings of the
IMACS World Congress on Scientific Computation, Applied Mathematics
and Simulation, Lausanne, Switzerland.

[Rao, 1996] Rao, A. S. (1996). AgentSpeak(L): BDI Agents Speak out in a
Logical Computable Language, van der Velde, W, and Perram, J. (Eds.)
Proceedings of the European Workshop on Modelling Autonomous
Agents in a Multi-Agent World (MAAMAW-96), pages 42–55, Springer-
Verlag.

[Rao and Georgeff, 1991] Rao, A. S., and Georgeff, M. P. (1991). Modeling
Rational Agents within a BDI-Architecture. Allen, J., Fikes, R., and Sande-
wall, E. (Eds.) Proceedings of the International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR’91), pages 473–484,
Morgan Kaufmann.

[Ratsimor et al., 2002] Ratsimor, O., Chakraborty, D., Tolia, S., Kushraj, D.,
Kunjithapatham, A., Gupta, G., Joshi, A., and Finin, T. (2002). Allia:
Alliance-based Service Discovery for Ad-Hoc Environments. Proceedings
of the ACM Workshop on Mobile Commerce, Atlanta, USA.

[Rich and Knight, 1990] Rich, E., and Knight, K. (1990). Artificial Intelli-
gence. McGraw-Hill.

[Ricci et al., 2002] Ricci, A., Omicini, A., and Denti, E. (2002). Virtual Enter-
prises and Workflow Management as Agent Coordination Issues. Interna-
tional Journal of Cooperative Information Systems, 11 (3/4), pages 355–379.

[Ricci et al., 2003] Ricci, A., Omicini, A., and Denti, E. (2003). Activity The-
ory as a Framework for MAS Coordination. Petta, P., Tolksdorf, R., and

www.manaraa.com

References 491

Zambonelli, F. (Eds.) Engineering Societies in the Agents World III, pages
96–110. Springer-Verlag.

[Ricordel and Demazeau, 2000] Ricordel, P.-M., and Demazeau, Y. (2000).
From Analysis to Deployment: A Multi-agent Platform Survey. Working
Notes of the First International Workshop on Engineering Societies in the
Agents’ World (ESAW-00), pages 93–105.

[Rodríguez et al., 1998] Rodríguez, J. A., Martin, F. J., Noriega, P., Garcia, P.,
and Sierra, C. (1998). Towards a Test-Bed for Trading Agents in Electronic
Auction Markets. AI Communications, 11(1), pages 5–19.

[Roli, 2002] Roli, F., and Zambonelli, A. (2002). Emergent Behaviors in Dis-
sipative Cellular Automata. Proceedings of the International Confer-
ence on Cellular Automata for Research and Industry (ACRI 2002), Geneva,
Italy.

[Rosenschein and Kaelbling, 1995] Rosenschein, S. J., and Kaelbling, L. P.
(1995). A Situated View of Representation and Control. Artificial Intel-
ligence, 73(1–2), pages 149–173.

[Royal Society of London, 2003] Royal Society of London (2003). Self-
Organization: The Quest for the Origin and Evolution of Structure. Philo-
sophical Transactions of the Royal Society of London.

[Russell and Norvig, 1995] Russell, S., and Norvig, P. (1995). Artificial Intel-
ligence: A Modern Approach. Prentice-Hall International.

[Ruth and Hannon, 1997] Ruth, M., and Hannon, B. (1997). Modelling Dy-
namic Economic Systems. Springer-Verlag.

[Sadri and Toni, 1999] Sadri, F., and Toni, F. (1999). Computational Logic
and Multiagent Systems: A Roadmap. Technical report, DFKI.

[Saeki, 1994] Saeki, M. (1994). Software Specification & Design Methods
and Method Engineering. International Journal of Software Engineering
and Knowledge Engineering.

[Saha and Mukherjee, 2003] Saha, D., and Mukherjee, A. (2003). Pervasive
Computing: A Paradigm for the Century. IEEE Computer, 36(3).

[Sandhu et al., 1996] Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and
Youman, C. E. (1996). Role-Based Access Control Models. IEEE Com-
puter, 29(2), pages 38–47.

[Sashima et al., 2002] Sashima, A., Kurumatani, K., and Izumi, N. (2002).
Physically-Grounding Agents in Ubiquitous Computing. Proceedings of
Joint Agent Workshop (JAWS’2002), Connecticut, USA.

www.manaraa.com

492 Methodologies and Software Engineering for Agent Systems

[Satyanarayanan, 2001] Satyanarayanan, M. (2001). Pervasive Computing:
Vision and Challenges. IEEE Personal Communications, 8(4).

[Sauter et al., 2002] Sauter, J. A., Matthews, R., Parunak, H. V. D., and
Brueckner, S. (2002). Evolving Adaptive Pheromone Path Planning Mech-
anisms. Proceedings of Autonomous Agents and Multiagent Systems, pages
434–440.

[Schmidt and Beigl, 1998] Schmidt, A., and Beigl, M. (1998). New Chal-
lenges of Ubiquitous Computing and Augmented Reality. Proceedings of
the CaberNet Radicals Workshop, Porto, Portugal.

[Schmidt and Simone, 1996] Schmidt, K., and Simone, C. (1996). Coordi-
nation Mechanisms: Towards a Conceptual Foundation of CSCW Systems
Design. Computer Supported Cooperative Work (CSCW), 5(2–3), pages
155–200.

[Schmidt and Simone, 2000] Schmidt, K., and Simone, C. (2000). Mind the
Gap! Towards a Unified View of CSCW. Dieng, R., Giboin, A., Karsenty,
L., and de Michelis, G. (Eds.) Designing Cooperative Systems: The Use of
Theories and Models, pages 205–221.

[Schumacher, 2001] Schumacher, M. (2001). Objective Coordination in
Multi-Agent System Engineering – Design and Implementation, Springer-
Verlag.

[Schweitzer and Zimmermann, 2001] Schweitzer, F., and Zimmermann, J.
(2001). Communication and Self-Organization in Complex Systems: A Ba-
sic Approach. Fischer, M. M., and Fröhlich, J. (Eds.) Knowledge, Complex-
ity and Innovation Systems, pages 275–296. Springer-Verlag.

[Scott, 1998] Scott, W. R. (1998). Organizations: Rational, Natural, and
Open Systems. Prentice-Hall International.

[Searle, 1969] Searle, J. (1969). Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press.

[Self and DeLoach, 2003] Self, A., and DeLoach, S. A. (2003). Designing and
Specifying Mobility within the Multiagent Systems Engineering Methodol-
ogy. Proceedings of the ACM Symposium on Applied Computing.

[Sen and Weiss, 1999] Sen, S., and Weiss, G. (1999). Learning in Multiagent
Systems. Weiss, G. (Ed.) Multiagent Systems, pages 259–299, The MIT
Press.

www.manaraa.com

References 493

[Servat and Drogoul, 2002] Servat, D., and Drogoul, A. (2002). Combining
Amorphous Computing and Reactive Agent-Based Systems: A Paradigm
for Pervasive Intelligence? Proceedings of AAMAS’ 02, ACM Press.

[Shaikhali et al., 2003] Shaikhali, A., Rana, O. F, Al-Ali, R., and Walker,
D. W. (2003). UDDIe: An Extended Registry for Web Services. Proceed-
ings of the Workshop on Service Oriented Computing: Models, Architec-
tures and Applications. IEEE Computer Society Press.

[Shalizi, 2001] Shalizi, C. R. (2001). Causal Architecture, Complexity and
Self-Organization in Time Series and Cellular Automata. Ph.D. Thesis, Uni-
versity of Wisconsin.

[Shaw and Garlan, 1996] Shaw, M., and Garlan, D. (1996). Software Architec-
ture: Perspectives on an Emerging Discipline. Prentice-Hall International.

[Shehory and Sturm, 2001] Shehory, O., and Sturm, A. (2001). Evaluation
of Modeling Techniques for Agent-Based Systems. Proceedings of the

International Conference on Autonomous Agents, pages 624–631. ACM
Press.

[Shen and Nome, 1999] Shen, W., and Norrie, D. (1999). Agent-Based Sys-
tems for Intelligent Manufacturing: A State of the Art Survey. International
Journal on Knowledge and Information Systems, 1(2), pages 129–156.

[Shen et al., 2002] Shen, W. M., Salemi, M., and Will, P. (2002). Hormone-
Inspired Adaptive Communication and Distributed Control for CONRO
Self-Reconfigurable Robots. IEEE Transactions on Robotics and Automa-
tion 18(5), pages 1-12.

[Shoham, 1991] Shoham, Y. (1991). Agent0: An Agent-Oriented Program-
ming Language and its Interpreter. Proceedings of AAAI-91, pages 704–
709.

[Shoham, 1993] Shoham, Y. (1993). Agent-Oriented Programming. Artificial
Intelligence, 60(1), pages 51–92.

[Shoham and Tennenholtz, 1995] Shoham, Y., and Tennenholtz, M. (1995).
On Social Laws for Artificial Agent Societies: Off-Line Design. Artificial
Intelligence, 73(1–2), pages 231–252.

[Sichman, 1998] Sichman, J. S. (1998). Depint: Dependence-Based Coalition
Formation in an Open Multi-Agent Scenario. Journal of Artificial Societies
and Social Simulation, 1(2).

www.manaraa.com

494 Methodologies and Software Engineering for Agent Systems

[Sichman and Demazeau, 2001] Sichman, J. S., and Demazeau, Y. (2001). On
Social Reasoning in Multi-Agent Systems. Revista Iberoamericana de In-
teligencia Artificial, 3(13), pages 68–84.

[Sichman et al., 1994] Sichman, J. S., Conte, R., Demazeau, Y., and Castel-
franchi, C. (1994). A Social Reasoning Mechanism based on Dependence
Networks. Proceedings of the European Conference on Cognitive Science.

[Sierra et al., 1997] Sierra, C., Faratin, P., and Jennings, N. R. (1997). A
Service-Oriented Negotiation Model between Autonomous Agents. Pro-
ceedings of MAAMAW’97, pages 17–35.

[Siewiorek, 2002] Siewiorek, D. P. (2002). New Frontiers of Application De-
sign. Communications of the ACM, 45(12).

[Singh, 1997] Singh, M. P. (1997). Formal Methods in DAI: Logic based Rep-
resentation and Reasoning. Multiagent Systems – A Modern Approach to
Distributed Artificial Intelligence, pages 331–376.

[Singh, 1998] Singh, M. P. (1998). Agent Communication Languages: Re-
thinking the Principles. IEEE Computer, 31(12), pages 40–47.

[Singh, 1999a] Singh, M. P. (1999a). An ontology for Commitments in Mul-
tiagent Systems: Toward a Unification of Normative Concepts. Artificial
Intelligence and Law, 7, pages 97–113.

[Singh, 1999b] Singh, M. P. (1999b). Write Asynchronous, Run Synchronous.
IEEE Internet Computing, 3(2), pages 4–5.

[Singh, 2000] Singh, M. P. (2000). Synthesizing Coordination Requirements
for Heterogeneous Autonomous Agents. International Journal of Autono-
mous Agents and Multi-Agent Systems, 3(2), pages 107–132.

[Singh, 2002] Singh, M. P. (2002). The Pragmatic Web. IEEE Internet Com-
puting, 6(3), pages 4–5.

[Singh, 2003] Singh, M. P. (2003). Distributed Enactment of Multiagent
Workflows: Temporal Logic for Service Composition. Proceedings of the

International Joint Conference on Autonomous Agents and Multiagent
Systems, pages 907–914. ACM Press.

[Sommerville, 2001] Sommerville, I. (2001). Software Engineering. Addison-
Wesley.

[Sousa and Garlan, 2002] Sousa, J. P., and Garlan, D. (2002). Aura: An Archi-
tectural Framework for User Mobility in Ubiquitous Computing Environ-
ments. Proceedings of the Working IEEE/IFIP Conference on Software
Architecture (WICSA’2002), Montreal, CA.

www.manaraa.com

References 495

[Sparkman et al., 2001] Sparkman, C. H., DeLoach, S. A., and Self, A. L.
(2001). Automated Derivation of Complex Agent Architectures from Anal-
ysis Specifications. Proceedings of the International Workshop on
Agent-Oriented Software Engineering, Montreal, CA.

[Spivey, 1992] Spivey, J. M. (1992). The Z Notation. Prentice-Hall Interna-
tional.

[Sreenath and Singh, 2003] Sreenath, R. M., and Singh, M. P. (2003). Agent-
Based Service Selection. Journal on Web Semantics, 1(1).

[Stafford, 2003] Stafford, T. S. (2003). E-Services. Communications of the
ACM, 46(6), pages 26–34. ACM Press.

[Stanford, 2003] Stanford, V. (2003). Pervasive Computing Puts Food on the
Table. IEEE Pervasive Computing Magazine, 2(1).

[Stohr and Zhao, 2001] Stohr, E. A., and Zhao, J. L. (2001). Workflow Au-
tomation: Overview and Research Issues. Information Systems Frontiers,
3(3), pages 281–296.

[Stone and Veloso, 2000] Stone, P., and Veloso, M. (2000). Multiagent Sys-
tems: A Survey from a Machine Learning Perspective. Autonomous Robots,
8(3), pages 345–383.

[Sturm and Shehory, 2003] Sturm, A., and Shehory, O. (2003). A Framework
for Evaluating Agent-Oriented Methodologies. Giorgini, P., and Winikoff,
M. (Eds.) Proceedings of the International Bi-Conference Workshop on
Agent-Oriented Information Systems, pages 60–67.

[Sturm et al., 2003] Sturm, A., Dori, D., and Shehory, O. (2003). Single-
Model Method for Specifying Multi-Agent Systems. Proceeding of
International Joint Conference on Autonomous Agents and Multi Agent Sys-
tems.

[Suhail, 1998] Suhail, A. (1998). CORBA Programming Unleashed. Sams.

[Sycara and Klusch, 2001] Sycara, K., and Klusch, M. (2001). Brokering and
Matchmaking for Coordination of Agent Societies: A Survey. Coordination
of Internet Agents, Springer-Verlag.

[Sycara et al., 1999] Sycara, K., Klusch, M., Idof, S., and Lu, J (1999). Dy-
namic Service Matchmaking among Agents in Open Information Environ-
ments. Journal ACM SIGMOD Record.

[Sycara et al., 2002] Sycara, K., Widoff, S., Klusch, M., Lu, J. (2002).
LARKS: Dynamic Matchmaking Among Heterogeneous Software Agents

www.manaraa.com

496 Methodologies and Software Engineering for Agent Systems

in Cyberspace. International Journal of Autonomous Agents and Multi-
Agent Systems, 5, pages 173–203.

[Sycara et al., 2003] Sycara, K., Paolucci, M., van Velsen, M., and Giampapa,
J. (2003). The RETSINA MAS Infrastructure. International Journal on
Autonomous Agents and Multi-Agent Systems, 7(1–2), pages 29–48.

[Szyperski, 1998] Szyperski, C. (1998). Component Software: Beyond
Object-Oriented Programming. Addison-Wesley.

[Tambe et al., 2000] Tambe, M., Pynadath, D. V., Chauvat, N., Das, A., and
Kaminka, G. A. (2000). Adaptive Agent Architectures for Heterogeneous
Team Members. Proceedings of the International Conference on Multi-
Agent Systems (ICMAS 2000), pages 301–308, Boston, USA.

[Tennenhouse, 2000] Tennenhouse, D. (2000). Embedding the Internet:
Proactive Computing. Communications of the ACM, 43(5), pages 36–42.

[Theune et al., 2003] Theune, M., Faas, S., Heylen D., and Nijholt, A. (2003).
The Virtual Storyteller: Story Creation by Intelligent Agents. Proceed-
ings of Technologies for Interactive Digital Storytelling and Entertainment,
pages 204–215.

[Thomas, 1993] Thomas, S. R. (1993). PLACA: An Agent Oriented Program-
ming Language. Ph.D. Thesis, Stanford University.

[Thomas, 1995] Thomas, S. R. (1995). The PLACA Agent Programming Lan-
guage. Wooldridge, M. J., and Jennings, N. R. (Eds.) Intelligent Agents,
pages 355–370. Springer-Verlag.

[Tolvanen, 1998] Tolvanen, J.-P. (1998). Incremental Method Engineering
with Modeling Tools: Theoretical Principles and Empirical Evidence. Ph.D.
Thesis, University of Jyväskylä.

[Trastour et al., 2001] Trastour, D., Bartolini, C., and Gonzalez-Castillo, J.
(2001). A Semantic Web Approach to Service Description for Matchmak-
ing of Services. Proceedings of the International Semantic Web Working
Symposium (SWWS).

[van de Vijver, 1997] van de Vijver, G. (1997). Emergence et Explication. In-
tellectica: Emergence and Explanation, 2-25.

[van der Hoek, 2001] van der Hoek, W. (2001). Logical Foundations of
Agent-Based Computing. Luck, M., Marík, V., Stepánková, O., and Trappl,
R. (Eds.) Multi-Agent Systems and Applications, Springer-Verlag.

www.manaraa.com

References 497

[van Harmelen et al., 2002] van Harmelen, F., Horrocks, I., Clark, P., Patel-
Schneider, P. F., Uschold, M., Rousset, M.-C., Hendler, J., and Schreiber, G.
(2002). Ontologies’ KISSES in Standardization. IEEE Intelligent Systems,
17, pages 70–79.

[van Lamsweerde, 2000] van Lamsweerde, A. (2000). Requirements Engi-
neering in the Year 00: A Research Perspective. Proceedings of the
International Conference on Software Engineering (ICSE’00), pages 5–19.

[van Lamsweerde, 2001] van Lamsweerde, A. (2001). Goal-Oriented Re-
quirements Engineering: A Guided Tour. Proceedings of the IEEE In-
ternational Symposium on Requirements Engineering (RE’01), pages 249–
263.

[van Lamsweerde and Massonet, 1995] van Lamsweerde, R., Darimont, A.,
and Massonet, P. (1995). Goal-Directed Elaboration of Requirements for
a Meeting Scheduler: Problems and Lessons Learnt. Proceedings of the

IEEE International Symposium on Requirements Engineering (RE’01),
pages 194–203.

[van Roy and Haridi, 1999] van Roy, P., and Haridi, S. (1999). Mozart: A
Programming System for Agent Applications. Proceedings of the Interna-
tional Workshop on Distributed and Internet Programming with Logic and
Constraint Languages.

[Varga et al., 1994] Varga, L. Z., Jennings, N. R., and Cockburn, D. (1994).
Integrating Intelligent Systems into a Cooperating Community for Electric-
ity Distribution Management. International Journal of Expert Systems with
Applications, 7(4), pages 563–579.

[Venkatraman and Singh, 1999] Venkatraman, M., and Singh, M. P. (1999).
Verifying Compliance with Commitment Protocols: Enabling Open Web-
Based Multiagent Systems. International Journal on Autonomous Agents
and Multi-Agent Systems, 2(3), pages 217–236.

[Viroli and Omicini, 2003] Viroli, M., and Omicini, A. (2003). Coordination
as a Service: Ontological and Formal Foundation. Brogi, A., and Jacquet,
J.-M. (Eds.) Foundations of Coordination Languages and Software Archi-
tecture, Elsevier Science.

[Visser et al., 2000] Visser, W., Park, S., and Penix, J. (2000). Using Predi-
cate Abstraction to Reduce Object-Oriented Programs for Model Checking.
Proceedings of the Workshop on Formal Methods in Software Practice,
pages 3–182. ACM Press.

www.manaraa.com

498 Methodologies and Software Engineering for Agent Systems

[von Bertalanffy, 1968] von Bertalanffy, L. (1968). General System Theory.
George Braziller.

[von Martial, 1992] von Martial, F. (1992). Co-ordinating Plans of Autono-
mous Agents, Springer-Verlag.

[Vouk and Singh, 1997] Vouk, M. A., and Singh, M. P. (1997). Quality of
Service and Scientific Workflows. Boisvert, R. F. (Ed.) Quality of Numerical
Software: Assessment and Enhancements, pages 77–89.

[Vygotskij, 1978] Vygotskij, L. S. (1978). Mind and Society. Harvard Uni-
versity Press.

[Walshe et al., 2000] Walshe, D., Kennedy, J., Corley, S., Koudouridis, G.,
Laenen, F. V., Ouzounis, V., Garijo, F., and Gomez-Sanz, J. (2000). Eu-
rescom P815: An Interoperable Architecture for Agent-Oriented Manage-
ment. Arabnia, H. R. (Ed.) Proceedings of IC-AI’2000, CSREA Press.

[Wan and Singh, 2003] Wan, F., and Singh, M. P. (2003). Commitments and
Causality for Multiagent Design. Proceedings of the International
Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS),
pages 749–756, ACM Press.

[Wagner, 2002] Wagner, G. (2002). A UML Profile for External AOR Models.
Proceedings of the International Workshop on Agent-Oriented Software
Engineering.

[Wegner, 1997] Wegner, P. (1997). Why Interaction is More Powerful than
Computing. Communications of the ACM, 40(5), pages 80–91.

[Weiser, 1991] Weiser, M. (1991). The Computer for the Twenty-First Cen-
tury. Scientific American.

[Weiser, 1993] Weiser, M. (1993). Some Computer Science Problems in Ubiq-
uitous Computing. Communications of the ACM, 36(7).

[Weiser, 1996] Weiser, M., and Brown, J. S. (1996). Designing Calm Tech-
nology. PowerGrid Journal, 1-1.

[Weiss, 1999] Weiss, G. (Ed.) (1999). Multiagent Systems. A Modern Ap-
proach to Distributed Artificial Intelligence. The MIT Press.

[Weiss, 2001] Weiss, R. (2001). Cellular Computation and Communications
Using Engineered Genetic Regulatory Networks. Ph.D. Thesis, MIT.

[Weiss, 2003] Weiss, G. (2003). Agent Orientation in Software Engineering.
Knowledge Engineering Review, 16(4), pages 349–373.

www.manaraa.com

References 499

[Weiss et al., 2003] Weiß, G., Rovatsos, M., and Nickles, M. (2003). Cap-
turing Agent Autonomy in Roles and XML. Proceedings of the Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems,
pages 105–112, ACM Press.

[Whitaker, 2003] Whitaker, R. (2003). ACM SIGGROUP: Self-Organization,
Autopoiesis, and Enterprises. Available at http://www.acm.org/sigois/
auto/Main.html.

[Wieland, 2003] Wieland, K. (2003). The Long Road to 3G. International
Telecommunications Magazine, 37(2).

[Winikoff et al., 2001] Winikoff, M., Padgham, L., and Harland, J. (2001).
Simplifying the Development of Intelligent Agents. Proceedings of AI2001,
pages 555–568. Springer-Verlag.

[Wolpert, 1998] Wolpert, D. H. (1998). Principles of Development. Oxford
University Press, UK.

[Wolpert and MacReady 1995] Wolpert, D. H., and MacReady, W. G. (1995).
No Free Lunch Theorems for Search. Technical Report SFI-TR-95-02-010,
Santa Fe Institute.

[Wood and DeLoach, 2001] Wood, M., and DeLoach, S. A. (2001). An
Overview of the Multiagent Systems Engineering Methodology. Ciancar-
ini, P., and Wooldridge, M. J. (Eds.) Agent-oriented software engineering.
pages 207–222, Springer-Verlag,

[Wooldridge, 1992] Wooldridge, M. J. (1992). The Logical Modelling of Com-
putational Multi-Agent Systems. Ph.D. Thesis, UMIST.

[Wooldridge, 1997] Wooldridge, M. J. (1997). Agent-Based Software Engi-
neering. IEE Proceedings Software Engineering, 144(1), pages 26–37.

[Wooldridge, 2000] Wooldridge, M. J. (2000). Intelligent Agents. Weiss, G.
(Ed) Multiagent Systems, pages 27–78, The MIT Press.

[Wooldridge, 2002] Wooldridge, M. J. (2002). An Introduction to Multi-Agent
Systems. John Wiley & Sons.

[Wooldridge and Ciancarini, 2000] Wooldridge, M. J., and Ciancarini, P.
(2000). Agent-Oriented Software Engineering: The State of the Art. Cian-
carini, P., and Wooldridge, M. J. (Eds.) Proceedings of the Workshop on
Agent-Oriented Software Engineering, pages 1–28, Springer-Verlag.

[Wooldridge and Jennings, 1995a] Wooldridge, M. J., and Jennings, N. R.
(1995a). Intelligent Agents: Theory and Practice. Knowledge Engineer-
ing Review, 10(2), pages 115–152.

www.manaraa.com

500 Methodologies and Software Engineering for Agent Systems

[Wooldridge and Jennings, 1995b] Wooldridge, M. J., and Jennings, N. R.
(1995b). Agent Theories, Architectures, and Languages: A Survey.
Wooldridge, M. J., and Jennings, N. R. (Eds.) Intelligent Agents, pages 1–
39, Springer-Verlag.

[Wooldridge and Jennings, 1998] Wooldridge, M. J., and Jennings, N. R.
(1998). Pitfalls of Agent-Oriented Development. Sycara, K., and
Wooldridge, M. J. (Eds.) Proceedings of the International Conference
on Autonomous Agents, ACM Press.

[Wooldridge et al., 1999] Wooldridge, M. J., Jennings, N. R., and Kinny, D.
(1999). A Methodology for Agent-Oriented Analysis and Design. Etzioni,
O., Müller, J. P., and Bradshaw, J. M. (Eds.) Proceedings of the Interna-
tional Conference on Autonomous Agents, pages 69–76, ACM Press.

[Wooldridge et al., 2002a] Wooldridge, M. J., Fisher, M., Huget, M.-P., and
Parsons, S. (2002a). Model Checking Multi-Agent Systems with MABLE.
Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 952–959, ACM Press.

[Wooldridge et al., 2000b] Wooldridge, M. J., Jennings, N. R., and Kinny, D.
(2000b). The Gaia Methodology for Agent-Oriented Analysis and Design.
International Journal of Autonomous Agents and Multi Agent Systems, 3(3),
pages 285–312.

[Wooldridge et al., 2002c] Wooldridge, M. J., Weis, G., and Ciancarini, P.
(Eds.) (2002c). Agent-Oriented Software Engineering II, Springer-Verlag.

[Xing and Singh, 2003] Xing, J., and Singh, M. P. (2003). Engineering
Commitment-Based Multiagent Systems: A Temporal Logic Approach.
Proceedings of the International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 891–898, ACM Press.

[Xu et al., 2002] Xu, D., Volz, R., loerger, T., and Yen, J. (2002). Modeling
and Verifying Multi-agent Behaviors using Predicate/Transition Nets. Pro-
ceedings of the International Conference on Software Engineering and
Knowledge Engineering, pages 193–200, ACM Press.

[Yolum and Singh, 2002] Yolum, P., and Singh, M. P. (2002). Flexible Proto-
col Specification and Execution: Applying Event Calculus Planning using
Commitments. Proceedings of the International Joint Conference on Au-
tonomous Agents and MultiAgent Systems (AAMAS), pages 527–534, ACM
Press.

[Yu, 1995] Yu, E. (1995). Modelling Strategic Relationships for Process
Reengineering. Ph.D. Thesis, University of Toronto.

www.manaraa.com

References 501

[Yu, 1997a] Yu, E. (1997a). Towards Modelling and Reasoning Support for
Early-Phase Requirements Engineering. Proceedings of International
Symposium on Requirements Engineering, pages 226–235.

[Yu, 1997b] Yu, E. (1997b). Why Agent-Oriented Requirements Engineering?
Proceedings of International Workshop on Requirements Engineering.

[Yu, 1999] Yu, E. (1999). Strategic Modelling for Enterprise Integration. Pro-
ceedings World Congress of the International Federation of Automatic
Control.

[Yu, 2001] Yu, E. (2001). Agent-Oriented Modeling: Software versus the
World. Agent-Oriented Software Engineering II, Springer-Verlag.

[Yu and Cysneiros, 2002] Yu, E., and Cysneiros, L. M. (2002). Agent-
Oriented Methodologies – Towards a Challenge Exemplar. Proceedings
of the International Bi-Conference Workshop on Agent-Oriented Infor-
mation Systems.

[Yu and Liu, 2002] Yu, E., and Liu, L. (2002). Designing Web-Based Sys-
tems in Social Context: A Goal and Scenario based Approach. Advanced
Information Systems Engineering, pages 37–51, Springer-Verlag.

[Yu and Liu, 2003] Yu, E., and Liu, L. (2003). Organization Modelling Envi-
ronment. Available at http://www.cs.toronto.edu/km/ome.

[Yu and Mylopoulos, 1998] Yu, E., and Mylopoulos, J. (1998). Why Goal-
Oriented Requirements Engineering? Proceedings of the International
Workshop on Requirements Engineering, pages 15–22.

[Yu and Singh, 2002] Yu, B., and Singh, M. P. (2002). An Evidential Model of
Distributed Reputation Management. Proceedings of the International
Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS),
pages 294–301. ACM Press.

[Yu et al., 2001] Yu, E., Liu, L., and Li, Y. (2001). Modelling Strategic Actor
Relationships to Support Intellectual Property Management. Conceptual
Modeling, pages 164–178, Springer-Verlag.

[Yunos et al., 2003] Yunos, H. M., Gao, J. Z., and Shim, S. (2003). Wireless
Advertising’s Challenges and Opportunities. IEEE Computer, 26(5).

[Zambonelli and Parunak, 2002] Zambonelli, F., and Parunak, H. V. D.
(2002). Sign of a Revolution in Computer Science and Software Engi-
neering. Proceedings of the International Workshop on Engineering
Societies in the Agents’ World, Springer-Verlag.

www.manaraa.com

502 Methodologies and Software Engineering for Agent Systems

[Zambonelli and Parunak, 2003] Zambonelli, F., and Parunak, H. V. D.
(2003). Toward a Change of Paradigm in Computer Science and Software
Engineering: A Synthesis. The Knowledge Engineering Review, 18, 2003.

[Zambonelli et al., 2000] Zambonelli, F., Jennings, N. R., and Wooldridge, M.
J. (2000). Organisational Abstractions for the Analysis and Design of Multi-
Agent Systems. Ciancarini, P., and Wooldridge, M. J. (Eds.) Agent-Oriented
Software Engineering, pages 127–141, Springer-Verlag.

[Zambonelli et al., 2001a] Zambonelli, F., Jennings, N. R., Omicini, A., and
Wooldridge, M. J. (2001a). Agent-Oriented Software Engineering for Inter-
net Applications. Coordination of Internet Agents: Models, Technologies,
and Applications, pages 326–346, Springer-Verlag.

[Zambonelli et al., 2001b] Zambonelli, F., Jennings, N. R., and Wooldridge,
M. J. (2001). Organizational Rules as an Abstraction for the Analysis and
Design of Multiagent Systems. International Journal of Software Engineer-
ing and Knowledge Engineering, 11(4), pages 303–328.

[Zambonelli et al., 2003] Zambonelli, F, Jennings, N. R., and Wooldridge,
M.J. (2003). Developing Multiagent systems: The Gaia methodology. ACM
Transactions on Software Engineering and Methodology, 12(3), pages 417–
470.

[Zave, 1997] Zave, P. (1997). Classification of Research Efforts in Require-
ments Engineering. ACM Computing Surveys, 29(4), pages 315–321.

www.manaraa.com

Index

3APL, 57

AAII, 174
ABLE framework, 54
ACL (Agent Communication Language), 22, 47,

260, 417
Activity Theory, 283, 284
ADELFE, 40, 53, 154, 158, 232, 338
agent, 9, 20, 21, 36, 48, 90, 130, 179, 191, 248,

260, 305, 396, 398, 407, 416, 433,
434

agent
agent architecture, 45, 445
agent class, 117
agent lifeline, 240
agent model, 35
agent-based model, 197
cooperative agent, 159,164, 167
types of agents, 408

agent class diagram, 248, 254
agent platform, 53
agent technology, 431, 432, 434
agent-based software development, 13
Agent0, 56
AgentBuilder, 42
AgentSpeak (L), 56
agentTool, 38, 43,60, 122, 172
AIP (Agent Interaction Protocol, 166
AIP (Agent Interaction Protocol), 85
Albert (language), 37
AMAS (Adaptive MultiAgent Systems), 157,

158, 327
amorphous computing, 300, 304, 361
analysis, 34, 35, 41, 70, 71, 76, 108, 163, 181
AOSE (Agent Oriented Software Engineering),

19, 394
AOSE (Agent-Oriented Software Engineering),

3
April language, 55
ASL, 262
AUML, 40, 84, 166, 172, 173, 178, 237
autocatalysis, 358, 360
Autonomic Computing, 7
autonomy, 10, 14, 49, 129, 267, 398

Bee-gent, 262

CLIPS language, 55
co-construction, 285
commitment, 13, 15
communication, 12, 15, 22, 47, 260, 417
complex system, 322, 433
component, 21
Concurrent-METATEM, 39, 55
ConGOLOG, 39, 56
conversation, 117, 119
cooperation, 284, 285, 328
coordination, 48, 273, 274, 286
coordination artifact, 284, 291

Data Coupling Diagram, 222
debugging, 58, 60, 229, 270, 439
decentralization, 351
delegation of responsability, 23
dependency, 91,274
deployment, 446
design, 34, 41, 71, 74, 77, 108, 117, 121, 165,

441
design

architectural design, 90, 93, 218, 222
architecture design, 423
detailed design, 90, 94, 218, 226
high-level design, 181
low-level design, 182

DESIRE, 44, 173
development environment, 42
Dia, 255
dialogic framework, 204
DISCERN, 386
distribution, 46, 351, 433, 441
dynamic, 11, 14,352,380

Electronic Institution Model, 197
emergence, 196, 308, 326, 347
emergence

emergent behaviour, 195
emergent functionality, 158
emergent phenomenon, 325

www.manaraa.com

504 Methodologies and Software Engineering for Agent Systems

environment, 12, 24, 75, 76, 87, 161, 162, 220,
279, 357, 382, 433

Equation-Based Models, 196
evaluation (of a methodology), 67, 129, 134,

138, 143
evolutionary computation, 196, 210

FIPA (Foudation for Intelligent Physical Agents),
260

FIPA (Foundation for Intelligent Physical
Agents), 20, 54, 239, 437

FIPA-OS, 263
Formal Tropos, 94
functional adequacy, 164, 328, 334

Gaia, 39, 52, 66, 69, 124, 134, 173, 178, 220,
231

goal, 58, 76, 108, 110, 179, 220
goal analysis, 102
Grasshopper, 263
grid, 394, 413, 414, 447
Growing Point Language, 310, 314

heterogeneity, 8, 11, 14, 441

i*, 36, 58, 90
implementation, 34, 55
implementation tool, 444
infrastructure, 273, 278
INGENIAS, 41,43, 172, 194
interaction, 24, 179, 180, 187, 275, 281, 382
interaction

interaction diagram, 225
interaction model, 74, 77
thread of interaction, 241

JACK, 229
JADE, 44, 48, 54, 61,264

KAOS, 37

language, 55
lifecycle, 66, 127, 132, 196
Lisp, 56

MABLE, 60
MADKIT platform, 41, 52, 54, 61
MAML, 57
MAS-CommonKADS, 38, 178
MaSE, 37, 66, 107, 125, 143, 172, 232
MASIF, 54
MASSIVE, 173
mediation, 382
MESSAGE, 41, 52, 154, 173, 177, 232
message, 130, 243, 267
meta-model, 41, 81
methodology, 65, 127, 153, 435, 436

Microsoft Visio, 255
mobile computing, 399
modelling language, 66, 127
morphogen gradients, 306
Mozart language, 56
multiagent system, 107, 197, 378, 397, 435, 441

NCS (Non Cooperative Situations), 159, 167,
170, 328, 330, 335

norm, 130, 197, 204, 205
notation, 85, 87, 131,224, 238

observation, 382
online engineering, 378, 383
ontology, 47, 198
Opal, 263
open architecture, 5, 6
open system, 8, 301, 379, 380, 382, 441
open system

a model of open computational system,
381

OpenTool, 172, 173, 255
organization, 52, 69, 130, 179, 181, 192, 252,

292, 344
Organization Theory, 98
organization view, 180
organizational rules, 76, 77
organizational structures, 76, 78, 87

PASSI, 40,43, 172, 173
performative structure, 204
pervasive computing, 315, 399
pheromone, 310
Prolog, 56
Prometheus, 155, 173,217
Prometheus Design Tool, 228
protocol, 13, 15, 80, 130, 190, 197, 226, 245

requirement, 35, 181, 220
requirement

early requirement, 90, 91
final requirement, 161
late requirement, 90, 92
preliminary requirement, 161

RETSINA framework, 54
ROADMAP, 79
role, 36, 71, 76, 108, 109, 113, 115, 130, 179,

198, 240, 249
RUP (Rational Unified Process), 161, 178, 181

SADDE, 53, 154, 196, 232
scene, 197, 198, 204
self-assembly, 311
self-organization, 52, 158, 300, 325, 331, 344–

346, 348
semantic composability, 27
semantic extensibility, 28
semantic interoperability, 25

www.manaraa.com

Index 505

sequence diagrams, 112, 239, 253
service, 74, 421, 422
service discovery, 419, 420
service-oriented approach, 415
SOLACE, 385
specification, 218,220
stereotype, 167
swarming, 300, 341–343, 353

ubiquitous computing, 394, 395, 400, 401
UDDI (Universal Description Discovery and In-

tegration), 14,404, 415, 420,422
UML, 40, 84, 173, 177, 178, 237
use cases, 112, 162,221

validation, 57, 383, 384,440
verification, 57, 58, 94,440
VIRTUE, 385

task, 108, 114, 115, 130, 179, 182, 291
testing, 34,57,229,440
TOTA, 316
Tropos, 58,66, 90, 125, 138, 173, 220, 232
TuCSon, 293

Web services, 6,420

Z, 38
Zeus, 37, 42,60, 263

